
Bayesian Probabilistic Numerical Integration
with Tree-Based Models

Xing Liu

Imperial College London

MCM 2021

November 8, 2021

Xing Liu (Imperial College London) BART-Int MCM 2021 1 / 16



This talk is based on

H. Zhu, X. Liu, R. Kang, Z. Shen, S. Flaxman, F.-X. Briol (2020). Bayesian
probabilistic numerical integration with tree-based models. NeurIPS 2020.

Xing Liu (Imperial College London) BART-Int MCM 2021 2 / 16



Overview of Today’s Talk

1. Bayesian Probabilistic Numerical Integration (BPNI)

2. Bayesian Quadrature

3. Bayesian Additive Regression Trees (BART) and BART Integration

4. Experiments

5. Summary
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Numerical Integration

Numerical integration concerns the estimation of an intractable integral

Π[f ] :=

∫
X
f(x)dΠ(x) =

∫
X
f(x)π(x)dx,

where f : X → R (X ⊂ Rd) is assumed to be square-integrable w.r.t. a
distribution Π on X that attains a density π.

Examples: Posterior expectations, EM algorithm, differential equations.

Methods: Monte Carlo integration (MI), MCMC, SMC, QMC...

They are all quadrature rules:

Π̂[f ] =

n∑
i=1

wif(xi),

for some design points {xi}ni=1 ⊂ X and weights {wi}ni=1.

Problem: Not straightforward to quantify uncertainties about Π[f ] given
only a small number of function evaluations!
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Bayesian Quadrature and BPNI

Bayesian quadrature (BQ): frame the problem as a statistical estimation task, so
that probabilistic statements can be used to quantify uncertainty about Π[f ] for
finite n.

carries a Bayesian interpretation

takes the form of a quadrature rule

Bayesian Probabilistic Numerical Integration (BPNI): any Bayesian estimators
that can be used to estimate an intractable integral (not necessarily a quadrature
rule).

Recipe of BQ:

1 Posit a GP prior distribution for the integrand f .

2 Compute the posterior distribution given values of f at some design points.

3 Push the distribution forward through Π[·] to get the implied distribution on
Π[f ].
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Why not Stick to GPs?

Advantages:

Posterior distribution for integrand f (and hence Π[f ]) has a closed-form
(assuming integrals of the form Π[k(·, x)] are available, where k is the
covariance function of the GP).

Different covariance functions k can be selected to accommodate integrands
with different properties (smoothness, periodicity etc.).

Disadvantages

Discontinuities: Hard to choose k when f is non-smooth or discontinuous.

Computational cost: O(n3). Prohibitive for large n.

High dimensions: Applications of BQ are often limited to low-dimensional
problems due to the curse of dimensionality, since the number of points
needed will grow exponentially with d.

We have chosen a GP prior as the model for f , but this is not necessarily the only
choice! We consider instead tree-structured models.
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Bayesian Additive Regression Trees (BART)

1 A regression tree is a step function:

gT ,β(x) =

K∑
k=1

βk1χk
(x),

where β := (β1, . . . , βK)> ∈ RK are the leaf values, and χk ⊂ X so that
T := {χk}Kk=1 forms a partition of X .

2 A T -additive regression tree is a sum of regression trees:

gE,B(x) :=

T∑
t=1

gTt,βt
(x),

where B := {βt}Tt=1 and E := {Tt}Tt=1.
3 A Bayesian additive regression tree (BART) is any distribution on the

family of T -additive regression trees
I This can be done by specifying a (prior) distribution on the leaf values B and

partition E (Chipman et al. 1998, 2010).
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From BART to BART-Int

Modelling f with BART: Posit a BART prior on function f → condition on data
{xi, yi}ni=1 → induce a posterior distribution Pn (with density pn), whose mean is

f(x) ≈ gn(x) := EPn
[gE,B(x)] =

∫
Ω

gE,B(x)pn(E ,B)dEdB.

This posterior mean is intractable, but can be estimated by drawing m MCMC
samples of trees {gnj }mj=1 from the BART posterior:

gn(x) ≈ ĝn(x) =
1

m

m∑
j=1

gnj (x) =
1

m

m∑
j=1

T∑
t=1

Kt,j∑
k=1

βjt,k1χj
t,k

(x).

BART-Int estimates Π[f ] by pushing the above forward through Π:

Definition (BART-Int Estimator (Our contribution))

Π[ĝn] =
1

m

m∑
j=1

Π
[
gnj
]

=
1

m

m∑
j=1

T∑
t=1

Kt,j∑
k=1

βjt,kΠ
[
1χj

t,k

]
.
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BART-Int (Our Contribution)

Advantages:

A T -additive regression tree is a step function, so is discontinuous in nature.

Computational cost: O(Tmn) (Pratola et al. 2014).

Disadvantage:

Unlike GPs, BART posteriors are intractable, so needs to be approximated
(e.g. using MCMC).

BART-Int requires probabilities of the form Π[1χj
t,k

], which are also

intractable.
I Can be approximated, e.g., by using another sample from Π.
I Corresponds to the issue of intractable kernel means Π[k(·, X)] for BQ.
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Theoretical Results

Theorem (Concentration Bound for BPNI; informal)

Suppose f is in some normed space H ⊆ L2(Π), and the BPNI prior g satisfies some
regularity conditions. If ∃N ∈ N+ such that:

A1. (Concentration bounds) ∃{εn}n≥N such that
limn→∞ P[‖f − g‖n > Anεn|Xn, yn] = 0 for any An →∞ as n→∞.

A2. (Quadrature rates) ∃{γn}n≥N with γn → 0 as n→∞ such that
sup‖h‖H≤1 | 1n

∑n
i=1 h(xi)−Π[h]| = O(γn).

then, we have

lim
n→∞

P[|Π[f ]−Π[g]| > Cn max(εn, γn)|Xn, yn] = 0

for any Cn →∞ as n→∞.

Plug in existing results for A1 and A2! (Rockova and Saha 2019, van der Vaart and van

Zanten 2011)
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Experiment I: Step Functions

f(x) = 1(0.5,1](x) over [0, 1] with BART-Int and BQ with 20 design points with
uniform measure.
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Experiment II: Portfolio Management (Chan et al. 2012)

Suppose we have d loans to obligators, each with value ci for i = 1, . . . , d. Let xi
denote the financial strain on loan i, and suppose pi is a thresholds after which
default occurs. We assume xi ∼ Exp(1), and define the portfolio loss as

`(x) =

d∑
i=1

ci1{xi>pi}(x).

Probability of making a loss greater than γ:

pγ =

∫
X
1{`(x)>γ}(x)Π(dx).

Method MAPE Std. Err.

BART-Int 1.71e-01 2.56e-02
d = 5 MI 1.95e-01 2.29e-02

n = 2500 GP-BQ 1.68e-01 2.09e-02

BART-Int 1.56e-02 2.35e-03
d = 10 MI 9.98e-01 4.47e-04

n = 5000 GP-BQ 2.72e-02 5.20e-03

BART-Int 8.40e-03 1.60e-03
d = 20 MI 9.94e-01 6.34e-04

n = 10000 GP-BQ 2.92e-02 4.90e-03
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Summary

BQ works well for smooth integrands, but is less desirable for discontinuous f .

We proposed a novel BPNI algorithm, BART-Int, using BART instead of a
GP.

Empirically, BART-Int complements, rather than replaces, BQ for
discontinuous integrands.
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