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CONTENTS

Abstract

The complexity of many real-life data generating processes either defies the access to the likeli-
hood function or renders it too expansive to be evaluated. In this case, standard Bayesian inference
techniques, such as Markov chain Monte Carlo, can no longer be used. A popular roundabout is Ap-
proximate Bayesian Computation (ABC). ABC only assumes one has a generative model from which
data can be drawn. It relies on a user-specified discrepancy metric that compares some summaries
of the observation and the generated data. However, an improperly selected metric or summary may
bias the discrimination between models. Optimal transport (OT) metrics have recently been proposed
to remedy this issue. OT metrics are flexible, admit decent convergence properties and are often able
to capture all differences between distributions. In this essay, we review and compare two OT met-
rics and one information-based measure that arose in the ABC literature, namely the Wasserstein
distances, the maximum mean discrepancy (MMD) and the Kullback-Leibler (KL) divergence. We
summarize the theoretical studies of their posterior concentration in the present literature, and discuss
how these metrics can be adapted to large-scale data sets. We also compare these methods through
four benchmark experiments, including a real-life study on ecological dynamic systems.
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1 INTRODUCTION

1 Introduction

Bayesian inference relies heavily on the likelihood function, which specifies connections between the data
and some parameters governing the underlying model. When the likelihood function is known, classical
Bayesian inference techniques such as Markov chain Monte Carlo is often used to draw posterior samples,
and inference on the model parameters can then be made. However, the increasing complexity of many
models in modern statistical research renders the likelihood function intractable or too costly to evaluate
from. Approximate Bayesian computation (ABC) serves as an important tool to overcome this issue
[Beaumont, 2019; Sisson et al., 2018; Marin et al., 2011]. ABC assumes that one has a generative model
from which one can generate samples but has no access to its likelihood function. Its original idea was
based on Pritchard et al. [2000], and a number of variants has been developed henceforth. ABC has
been found useful in a range of applications, including model selection [Beaumont, 2006], archealogy
[Wilkinson and Tavaré, 2009], ecological population study [Wood, 2010] and pathogen transmission
[Tanaka et al., 2006].

Upon observing some data, the core idea of ABC is based on repetitive generation of synthetic (or
pseudo) data from the generative model and only accepting those that are “close” to the observed one.
Closeness is measured by some user-specified data discrepancy metric D that discriminates the observed
data from the synthetic ones. When numerical evaluation of the discrepancy between the full data is
costly, one often adopts a low-dimensional transformation, known as a summary statistic. The quality of
the ABC estimation depends heavily on both the data discrepancy and the summary statistic [Beaumont,
2019].

A main research theme in the past two decades has been devoted to providing guidelines on con-
structing suitable summary statistics (see e.g. Gutmann et al. [2018]; Fearnhead and Prangle [2012]).
Another line of research that has recently gained popularity advertises the use of metrics on spaces
of distributions as the data discrepancy, a celebrated example of which is the optimal transport (OT)
metrics [Villani, 2009]. The latter approach is more flexible, circumvents the need to construct summary
statistics and often exhibits a better posterior quality. Theoretical guarantees of the posterior concen-
tration with specific OT metrics are also available in the current ABC literature, e.g. the Wasserstein
ABC of Bernton et al. [2019a].

In this essay, we review and compare three ABC methods that use metrics on the space of probabil-
ity measures, specifically, the Wasserstein distances, the maximum mean discrepancy (MMD) and the
Kullback-Leibler (KL) divergence. The former two, in particular, are closely related to OT, while the
latter is a famous divergence measure in information theory. This essay is based primarily on the papers
Bernton et al. [2019a]; Park et al. [2016]; Bai Jiang [2018], which study respectively each of the three
metrics in the context of ABC.

The rest of the essay is organized as follows. Section 1.1 introduces notations. Section 2 reviews
the two fundamental ABC methods — the rejection and soft ABC — and provides illustrations via two
toy examples. Section 3 reviews the Wasserstein distances, MMD and KL divergence in the context
of ABC. Discussions on their posterior concentrations are provided in section 4. In particular, we
extend the concentration guarantee for rejection ABC to a more general setting of soft ABC (Prop. 4.5),
which, to our best knowledge, is not present elsewhere in the existing literature. In section 5, we apply
these methods to four benchmark models, including a real-life example of ecological dynamic study, and
comment on their performance. Section 6 concludes the essay.

1.1 Notation

We mostly follow the same notation in Bernton et al. [2019a]. Throughout, let (X ,F) be a measurable
space, where X ⊂ Rd for some d ∈ N is endowed with some metric ρ. Denote by P(X ) the set of
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probability measures on X . Each of the n observed data takes values in Y ⊂ Rdy for some dy ∈ N, and the

random vector y1:n := (y1, . . . , yn)ᵀ ∈ Yn has distribution µ
(n)
∗ ∈ P(Yn). We refer µ̂y1:n

:= n−1
∑n

i=1 δyi
to its empirical distribution even when yi are non-i.i.d., where δyi is the Dirac distribution with mass on
yi.

Let Θ ⊂ Rdθ be the parameter space endowed with some metric ρΘ, where dθ ∈ N. A model on Yn

is a collection of distributions parameterized by θ ∈ Θ and is denoted by M(Yn) := {µ(n)
θ : θ ∈ Θ}. A

model is identifiable if µθ = µθ′ implies θ = θ′. Throughout, we only consider purely generative models,
from which we can draw samples for any θ ∈ Θ, but whose likelihood is intractable.

Given z1:n ∼ µ
(n)
θ ∈ M(Yn), its empirical distribution is denoted as µ̂θ,z1:n

:= n−1
∑n

i=1 δzi . We
assume the sequences µ̂n → µ∗ and µ̂θ,n → µθ as n→∞, for some µ∗, µθ ∈ P(Y). Whenever we refer to
µ∗ and µθ, it is implicitly assumed that they exist.

Let D be a discrepancy metric on Yn quantifying the resemblance between the observed and synthetic
data. It can be a function of the data themselves, or defined through empirical distributions formed by
the data. Let s denote a summary statistic, i.e. a function of data mapping from Yn to some subset of
Yn. An identity function therefore corresponds to using the full data. With a slight abuse of notation,
the composition D(s(·), s(·)) defines a dis-similarity metric for ABC algorithms. Whenever we refer to
D as the discrepancy metric, such composition is implicitly assumed. The fundamental question in ABC
boils down to finding decent D and s.

2 ABC with Summary Statistics

2.1 Rejection ABC

Suppose that π is a prior distribution on θ and both π and µ
(n)
θ attain a density with respect to the

Lebesgue measure. It follows from Bayes’ rule that the posterior distribution of θ is given by

π(dθ|y1:n) =
µ

(n)
θ (dy1:n)π(dθ)∫

Θ µ
(n)
θ′ (dy1:n)π(dθ′)

.

In its most common form, the rejection ABC [Turner and Zandt, 2012; Sisson et al., 2018; Beaumont,

2019] proceeds by (i) sampling a candidate θ from π, (ii) generating synthetic data z1:n from µ
(n)
θ , and

(iii) accepting θ if D(y1:n, z1:n) ≤ ε, where ε ≥ 0 is a similarity threshold (see Algorithm 1). In words,
we keep θ if the model parametrized by θ generates data that are close to the true observation. This
results in samples from the joint density

π(dz1:n, dθ | D(y1:n, z1:n) ≤ ε) ∝ 1(D(y1:n, z1:n) ≤ ε)µ(n)
θ (dz1:n)π(dθ),

where 1 is the indicator function such that 1(A) = 1 if A is true and 0 otherwise. Marginalizing over
z1:n, we obtain the following ABC posterior density

πεy1:n
(dθ) := π(dθ | y1:n;D, ε) ∝ π(dθ)

∫
Yn

1(D(y1:n, z1:n) ≤ ε)µ(n)
θ (dz1:n). (1)

Given an observation y1:n, it is known that, under mild conditions, the ABC posterior converges
strongly to the true posterior π(·|y1:n) as ε tends to 0, see e.g. Bernton et al. [2019a]. Moreover, if
one fix ε > 0 and allows the number of observations to grow, the ABC posterior no longer converges
to the true posterior, but only a conditional of it. See section 4 for detailed discussions on posterior
convergence.
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2 ABC WITH SUMMARY STATISTICS

Algorithm 1: Rejection ABC

Input : Observed data y1:n, discrepancy D, prior π, threshold ε.
Output: ABC posterior samples θj , j = 1, . . . ,M .

1 Initialize j = 0 ;
2 while j ≤M do
3 Sample θ ∼ π ;

4 Sample z1:n ∼ µ̂(n)
θ ;

5 Accept θj = θ if D(y1:n, z1:n) ≤ ε.
6 end while

Algorithm 2: Soft ABC

Input : Observed data y1:n, discrepancy D, prior π, kernel κ, bandwidth ε.
Output: Empirical posterior distribution

∑M
j=1wjδθj .

1 for j = 1, . . . ,M do
2 Sample θj ∼ π ;

3 Sample z1:n ∼ µ̂(n)
θj

;

4 Set w̃j = κε(D(y1:n, z1:n)) ;

5 end for

6 Normalize weights wj :=
w̃j∑M
k=1 w̃k

.

A major problem with the rejection-sampling paradigm of Algorithm 1 is that, for even moderately
large n, the probability of sampling z1:n such that D(y1:n, z1:n) ≤ ε can be vanishingly small. This
motivates the use of a summary statistic s, i.e. accepting the proposed θ if D(s(y1:n), s(z1:n)) ≤ ε. The
rejection scheme then (marginally) samples θ from the density

π(dθ | s(y1:n);D, ε) ∝ π(dθ)

∫
Yn
I{D(s(y1:n), s(z1:n)) ≤ ε}µ(n)

θ (dz1:n).

Provided that s is sufficient, the likelihood µ
(n)
θ depends on θ only through s(z1:n). As a re-

sult, π(θ|s(y1:n);D, ε) = π(θ|y1:n;D, ε) and this is equivalent to sampling with the full data with no
“leakage” of information. If s is not sufficient, then ABC draws samples from a different distribution
π(θ|s(y1:n);D, ε), thus resulting in inaccurate posterior samples. In practice, however, finding sufficient
statistics is often a hard task, if not impossible. Where sufficient statistics are not available, common
choices of summary statistics are sample moments and empirical quantiles [Fearnhead and Prangle, 2012].

2.2 Soft ABC

A moment’s thought on Algorithm 1 reveals that it has the flavour of a kernel density estimation
procedure. Indeed, the integrand in Eq. 1 can be viewed as the convolution between the approximate

likelihood µ
(n)
θ and a uniform kernel κε(D(y1:n, z1:n)), where κε(u) = ε−11(u ≤ ε). Such a kernel imposes

a hard threshold in the sense that it only keeps θ for which the associated z1:n is close to y1:n, but it does
not discriminate the rest. This is intuitively a waste of information. In light of this, Soft ABC [Sisson
et al., 2018; Biau et al., 2015; Blum, 2010] allows a “soft” decision threshold by adopting a general kernel
(see Algorithm 2).

More formally, we define a kernel to be a non-negative function κ : R→ [0,∞) such that
∫
κ(u)du =

1,
∫
uκ(u)du = 0 and

∫
u2κ(u)du < ∞. The scaled kernel is defined to be κε(u) = ε−1κ(u/ε), where

3



2.3 Toy Examples

Kernel κ(u)

Uniform 1
21(|u| ≤ 1)

Gaussian 1√
2π

exp(−1
2u

2)

Laplacian 4
5 exp(−1

2 |u|)
Triangular (1− |u|)1(|u| ≤ 1)

Epanechnikov 3
4(1− u2)1(|u| ≤ 1)

Table 1: The functional forms of some fre-
quently used kernels. 0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2
u

k(
u)

kernels

Epanechnikov
Gaussian
Laplacian
Triangular
Uniform

Table 2: Plot of kernels functions κ(u) listed in Table 1.

ε > 0 is called the bandwidth or scale parameter. Furthermore, it is often assumed that κε(u) tends to
a point mass at u = 0 as ε → 0. Popular choices of kernels are summarized in Table 1. In this essay,
we focus primarily on the uniform and Gaussian kernels. Similarly to the nonparametric kernel density
estimation, the choice of ε often has more impact on the performance of soft ABC than the choice of
kernel [Sisson et al., 2018].

Instead of simple acceptance and rejection, soft ABC outputs a weighted sample {(θj , wj)}Mj=1, where

M ∈ N is the number of posterior samples, wj := κε(D(y1:n, z
(j)
1:n))/

∑M
l=1 κε(D(y1:n, z

(l)
1:n)) are the weigths

and z
(l)
1:n is the l-th synthetic data. Posterior moments can hence be estimated directly: for a test

function f , an unbiased estimator for
∫

Θ f(θ)π(dθ|y1:n) is
∑M

j=1wjf(θj). The soft ABC posterior density
generalizing Eq. 1 is

πεy1:n
(dθ) ∝ π(dθ)

∫
Yn
κε(D(y1:n, z1:n))µ

(n)
θ (dz1:n). (2)

A similar expression with summary statistics can also be derived straightforwardly. In section 4, we
show that, provided the kernel satisfies a so-called concentration condition, Eq. 2 converges strongly to
the true posterior as ε tends to zero, similarly to the rejection ABC posterior.

2.3 Toy Examples

We run rejection and soft ABC on two concrete examples — an Exponential model with a Gamma prior
and a normal model with a normal prior. They are designed in such a way that both the true and the
ABC posteriors are available in close form so that the performance of the ABC methods can be compared
directly. We use the Euclidean norm as the data discrepancy D in both examples. For each threshold ε,
M = 1024 posterior samples are drawn in producing the density plots.

2.3.1 Exponential Model

We consider one realization y ∈ Y = R+ from Exp(θ∗) with Gamma(α0, β0) prior on parameter θ > 0,
where θ∗, α0, β0 > 0. It is known that the Gamma distribution is a conjugate prior for Exponential
distributions; the resulting posterior is Gamma(α0 + 1, β0 + y) (see e.g. Casella and Berger [2001]).
Furthermore, choosing n = 1 allows us to derive the rejection ABC posterior analytically from Eq. 1.
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2 ABC WITH SUMMARY STATISTICS
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(a) Estimated ABC posteriors of θ.
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Figure 1: Rejection ABC posteriors of the Exponential model with various acceptance thresholds. The
true posterior density is shown by the grey areas. The approximation (left) worsens as ε increases. The
exact ABC posterior tends to the true posterior as ε approaches 0. The true parameter θ∗ = 2 is shown
by the black dotted line.

For 0 < ε < min(β0, y) and θ > 0, the ABC posterior density is

πεy(dθ) ∝ π(dθ)

∫ ∞
0

1(|y − z| ≤ ε)θe−θzdz ∝ θα0−1e−β0θ

∫ y+ε

y−ε
θe−θzdz ∝ θα0−1e−β0θ

(
e−(y−ε)θ − e−(y+ε)θ

)
.

Integrating over Θ = R+ and dividing by the normalizing constant yields the normalized ABC
posterior density

πεy(dθ) =

(
Γ(α0)

(β0 + y − ε)α0
− Γ(α0)

(β0 + y + ε)α0

)−1

θα0−1e−(β0+y)θ
(
eεθ − e−εθ

)
,

where Γ is the Gamma function. Keeping y fixed, a simple application of Taylor expansion on the
normalizing constant yields

Γ(α0)

(β0 + y − ε)α0
− Γ(α0)

(β0 + y + ε)α0
=

Γ(α0)

(β0 + y)α0

(
1

(1− ε
β0+y )α0

− 1

(1 + ε
β0+y )α0

)

=
Γ(α0)

(β0 + y)α0

(
1 +

α0ε

β0 + y
− 1 +

α0ε

β0 + y
+O(ε3)

)
=

Γ(α0)

(β0 + y)α0

(
2α0ε

β0 + y
+O(ε3)

)
.

Also, exp(εθ)− exp(−εθ) = 2εθ +O(ε3). Combining the two gives

πεy(dθ) = θα0−1e−(β0+y)θ · (β0 + y)α0+1(εθ +O(ε2))

α0Γ(α0)(ε+O(ε2))
=

(β0 + y)α0+1

Γ(α0 + 1)
θα0e−(β0+y)θ · ε+O(ε3)

ε+O(ε3)
,

which tends pointwise to a Gamma(α0 + 1, β0 + y) density as ε → 0, as expected. Fig 1 illustrates the
true posterior as well as the exact and estimated ABC posterior densities for various choices of ε with
θ∗ = 2, α0 = 1 and β0 = 1. We can see that the estimation improves as ε decreases to 0, which matches
the above analysis.
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2.3 Toy Examples
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Figure 2: Soft ABC posteriors of the univariate normal model using a Gaussian kernel and various
bandwidths. The true posterior density is shown by the grey areas. The exact ABC posterior is a
Gaussian density with a inflated variance compared with the true posterior, as shown by Eq. 4. Again,
the ABC approximation improves as ε approaches 0. The true parameter θ∗ = 0 is shown by the black
dotted line.

2.3.2 Univariate Normal Model

We consider i.i.d. samples yi from N (θ∗, σ
2
0), i = 1, . . . , n, and a N (m0, τ

2
0 ) prior on the mean, with

known n ∈ N, σ2
0, τ

2
0 > 0 and m0. Note first that the sample mean is a sufficient statistic for θ. Indeed,

∀θ ∈ Θ = R,

µ
(n)
θ (dz1:n) =

1

(2πσ2
0)n/2

exp

(
− 1

2σ2
0

n∑
i=1

(zi − θ)2

)

=
1

(2πσ2
0)n/2

exp

(
− 1

2σ2
0

n∑
i=1

(zi − z + z − θ)2

)

=
1

(2πσ2
0)n/2

exp

(
− 1

2σ2
0

n∑
i=1

(zi − z)2

)
exp

(
− n

2σ2
0

(z − θ)2

)
.

Sufficiency of s(z1:n) := z1:n = n−1
∑n

i=1 zi then follows from the Fisher-Neyman factorization theorem
(see e.g. Casella and Berger [2001]). We perform soft ABC on s using a Gaussian kernel. The soft ABC
approximation to the likelihood is given by

µ
(n)
θ (z1:n) ∝

∫
R

exp

(
− 1

2ε
(z1:n − y1:n)2

)
exp

(
− n

2σ2
0

(z1:n − θ)2

)
dz1:n

∝
∫
R

exp

(
−ε

2 + σ2
0/n

2ε2σ2
0/n

(z1:n − c)2

)
exp

(
− 1

2(ε2 + σ2
0/n)

(y1:n − θ)2

)
dz1:n

∝ exp

(
− 1

2(ε2 + σ2
0/n)

(y1:n − θ)2

)
(3)

for some constant c, where we have applied the identity φσ1(x − m1)φσ2(x − m2) = φ
1/
√
σ2

1+σ2
2
(m1 −

m2)φ
σ1σ2/

√
σ2

1+σ2
2
(x− (m1σ

−2
1 +m2σ

−2
2 )/(σ−2

1 + σ−2
2 )) to yield the second line, and φb(x− a) denotes a

normal density with mean a and standard deviation b. Using a normal prior and applying this identity
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3 ABC WITH OPTIMAL TRANSPORT METRICS

again leads to the following soft ABC posterior density

π(dθ|y1:n;D, ε) ∝ exp

(
−τ
−2
0 + (σ2

0/n+ ε2)−1

2

(
θ − m0τ

−2
0 + y1:n(σ2

0/n+ ε2)−1

τ−2
0 + (σ2

0/n+ ε2)−1

)2
)
. (4)

Fig. 2 illustrates the results with n = 500, θ∗ = 0, σ0 = 2, m0 = 1 and τ0 = 2. We can see that for any
fixed θ and y1:n, π(dθ|y;D, ε)→ π(dθ|y1:n), as ε→ 0. This is not surprising given the sufficiency of the
chosen summary statistic. This can also be anticipated by inspecting Eq. 3. Recall that z|θ ∼ N (θ, σ2

0/n),
so Eq. 3 can be viewed as the true likelihood with variance inflated by ε2. The approximation should
therefore be reasonable if ε2 is dominated by σ2

0/n.

3 ABC with Optimal Transport Metrics

Given the limitations of ABC methods that rely on summary statistics, various statistic-free approaches
have been explored in recent literature. One line of research that has become particularly popular is to
use dis-similarity measures on the space of distributions, which we refer to as OT metrics. Examples
include the Wasserstein ABC (WABC) of Bernton et al. [2019a], which uses the Wasserstein distances.
The recent work of Nadjahi et al. [2019] extends this idea to the sliced-Wasserstein distance [Kolouri
et al., 2019] in order to alleviate the computational burden of the Wasserstein distances. Another ABC
paradigm, termed K2-ABC [Park et al., 2016], projects the empirical distributions formed by the data
into a reproducing kernel Hilbert space (RKHS) and uses the Hilbert space norm as the data discrepancy.
Such a representation of distributions is known as the kernel mean embedding [Muandet et al., 2017],
and the resulting metric is called the maximum mean discrepancy (MMD).

Another metric that has been studied in the context of ABC is the KL-divergence, which leads to
the KL-ABC of Bai Jiang [2018]. It is less computationally demanding than WABC and K2-ABC,
and discriminate models in a similar manner as using maximum likelihood estimates as the summary
statistic.

Another potentially useful OT metric is the Sinkhorn divergence [Cuturi, 2013; Genevay et al., 2018].
It is an interpolation between the Wasserstein distances and the MMD, and can be computed in O(n2)
by the Sinkhorn’s algorithm. Whether the Sinkhorn divergence satisfies the axioms of distance functions
is still unknown, which leaves formal analysis on its behaviour within ABC an open problem. However,
it has shown competitive performance in empirical experiments (e.g. in Bernton et al. [2019a]).

In this section, we review and compare WABC, K2-ABC and KL-ABC. We provide a brief background
on each discrepancy metric, followed by discussions on its estimation and scalability to large-scale data.

3.1 Wasserstein ABC

Wasserstein ABC [Bernton et al., 2019a] replaces the arbitrary discrepancy metric in Algorithm 1 by the
celebrated Wasserstein distances [Villani, 2009; Panaretos and Zemel, 2019]. The Wasserstein distances
are metrics between probability measures and are inspired by the optimal transport problem. They have
been applied to many areas in statistics and machine learning, including generative adversarial networks
(GANs) [Arjovsky et al., 2017], goodness-of-fit testing [Ramdas et al., 2017; Panaretos and Zemel, 2019]
and image retrieval [Grauman and Darrell, 2004]. We provide a brief review of Wasserstein distances
and optimal transport before discussing its application to ABC.

3.1.1 Optimal Transport and Wasserstein Distances

The Wasserstein distance is a special case of the OT problem, which is one of the most fundamental
optimization problems [Villani, 2009]. Its probabilistic formulation, in particular, asks how to find a
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3.1 Wasserstein ABC

coupling that minimizes the cost between two random variables of known marginal distributions. The
Wasserstein distance appears as the minimal value of the objective and serves naturally as a notion of
distance between probability measures.

Using the same notations as before, let ρ : Y × Y → [0,∞) be a ground distance on the data space
Y ⊂ Rdy , e.g. the Euclidean or L1 norm. For any p ∈ [1,∞), let Pp(Y) be the space of probability
measures on Y with finite p-th moment, i.e. Pp(Y) = {µ ∈ P(Y) :

∫
Y ρ(y0, y)µ(dy) < ∞ for some y0 ∈

Y}. This is known as the Wasserstein space of order p. It can be shown that this definition is in fact
independent of the reference point y0, as remarked on page 78 of Villani [2009].

Definition 1. The Wasserstein distance of order p between two distributions µ, ν ∈ P(Y) is

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Y×Y

ρ(y, z)pγ(dy, dz)

)1/p

= inf
Y∼µ,Z∼ν

(E[ρ(Y, Z)p])1/p ,

where Γ(µ, ν) is the set of measures with marginals µ and ν, known as the couplings of µ and ν.

It can be shown that the infimum is always attained [Villani, 2009, Theorem 4.1] and thatWp is finite
on and metrizes Pp(Y) (definition of the metrizable property can be found in Appendix D.2; see also
[Villani, 2009, page 84]). The special case W1 is also called the Kantorovich-Rubinstein distance. We
focus primarily on p = 1 and on empirical distributions µ̂y1:n = n−1

∑n
i=1 δyi and µ̂z1:m = m−1

∑m
j=1 δzj

formed by data y1:n and z1:m. The Wasserstein distance between the empirical distributions takes the
form

DWp(µ̂y1:n , µ̂z1:m) :=Wp(µ̂y1:n , µ̂z1:m) =

 inf
γ∈Γn,m

n∑
i=1

m∑
j=1

ρ(yi, zj)
pγij

1/p

, (5)

where Γn,m := {A ∈ Rn×m : Aij ≥ 0 ∀i, j, and
∑

j Aij = m−1 ∀i,
∑

iAij = n−1 ∀j}. In words, Γn,m is

the set of matrices with non-negative entries whose rows sum to m−1 and columns sum to n−1 [Villani,
2009, Introduction]. For simplicity, we shall write DWp(y1:n, z1:m) for DWp(µ̂y1:n , µ̂z1:m).

3.1.2 Fast WABC

When m = n, finding the optimal γ∗ ∈ Γn,m for Eq. 5 can be viewed as an assignment problem
[Bernton et al., 2019b]. In one-dimensional cases, this can be done by first finding permutations σy
and σz that respectively sort y1:n and z1:n in increasing order, then associating each yi with zσz◦σ−1

y (i).

The computational cost is therefore of the same order as a sorting problem (O(n log n)). However, for
dimensions larger than 1, the cost is often of order n3 using the state-of-the-art Hungarian algorithm
[Munkres, 1957]. This can be prohibitive for large n. However, in some ABC settings, the cost of

generating samples from µ
(n)
θ would dominate the cost of evaluating Wasserstein distances whatsoever.

In our experiments, we follow the implementation in Bernton et al. [2019a], which adopts the shortlist
method elaborated in Gottschlich and Schuhmacher [2014] and implemented by the R package transport
[Schuhmacher et al., 2017]. This method has no guarantee of polynomial running times, but is often
found to be subcubic in practice.

One way to speed up the computation of Eq. 5 is to modify the definition of Wasserstein distance by
including a regularization term, which leads to the Sinkhorn divergence (SD) [Cuturi, 2013]. Depending
on the regularization strength, the SD would tend to the Wasserstein distances (no regularization) or
MMD (infinitely large regularization). Each evaluation of the SD requires O(n2).

Bernton et al. [2019a] also proposed two alternatives to Wasserstein distances that enjoy a subcubic
cost. The first one is the Hilbert distance, which generalizes the idea of solving for Wp by sorting in
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3 ABC WITH OPTIMAL TRANSPORT METRICS

the univariate case to multivariate distributions through projections via the Hilbert space-filling curve
[Gerber and Chopin, 2014]. It upper-bounds Wp, approximates Wp well for small dy and discriminates
between parameters in a similar fashion to Wp. The cost of one call is O(n log n).

A second metric they mentioned is called the swapping distance. It was originally proposed by
Puccetti [2017], and is computed via a greedy swapping algorithm that finds an approximation to the
optimal assignment σ. Beginning with the σ obtained by Hilbert sorting, the algorithm proceeds by
checking, for all 1 ≤ i < j ≤ n, whether swapping σ(i) and σ(j) would result in a decline in ρ(yi, zσ(i))

p+
ρ(yi, zσ(j))

p. By construction, the swapping distance is bounded from below by Wp and from above by
the Hilbert distance. It requires the same order of cost O(n2) per evaluation as the Hilbert distance.

3.2 K2-ABC

K2-ABC, first presented by Park et al. [2016], is an ABC paradigm that uses the maximum mean
discrepancy between the so-called kernel mean embedding (KME) of the empirical distributions formed
by the data. Given a positive definite kernel (see Appendix A for its definition), the KME transforms
a probabilistic measure to an element in the associated reproducing kernel Hilbert space (RKHS). The
Hilbert space distance on the RKHS can then be used as a discrepancy between the embeddings. When
the kernel possesses a so-called characteristic property, such an embedding mapping is injective. The
embedding mapping plays the role of summary statistics and is able to capture all information about
the data whenever a characteristic kernel is used [Muandet et al., 2017].

Before presenting the K2-ABC algorithm, we first define kernel mean embeddings on the space
of probability measures, P(Y). With a slight abuse of notation, we will occasionally denote random
variables by both capital and lower-case letters in this section. Whether a lower-case letter is random
should be clear from context.

3.2.1 Kernel Mean Embedding

Definition 2 (Kernel mean embedding). Given a probabilistic measure µ ∈ P(X ) and a positive definite
kernel k : Y × Y → R, the kernel mean embedding1 of µ is mµ := EZ∼µ[k(·, Z)].

We remark that the positive definite kernel k is defined on the product domain of Y of an arbitrary
dimension. This is not to be confused with the kernel κ introduced in section 2, which is only defined
on R (see A of appendix).

The kernel mean embedding mµ exists so long as k is bounded or, in the case where k is unbounded,
µ satisfies a suitable moment condition with respect to k [Muandet et al., 2017, Lemma 3.1]. We shall
give a proof of the former case, which holds for most commonly used kernels. When the embedding
exists, it is an element of the RKHS H associated with kernel k.

The KME gives a representation property of distributions in a Hilbert space. Recall that a positive
definite kernel k has the reproducing property where, for y, z ∈ Y, k(y, z) = 〈k(·, y), k(·, z)〉H. A typical
interpretation of the kernel is therefore a mapping of an element in Y to an inner product of some elements
z 7→ k(·, z) in H. KMEs generalize this to a measurable space (Y,F) through a map µ 7→

∫
k(·, z′)dµ(z′).

Indeed, if the measure is a Dirac-delta distribution δz with point mass at z, then we recover the usual
interpretation, because any measurable and finite-valued function f is integrable with respect to δz, and
its integral equals to f(z) [Muandet et al., 2017]. This suggests that, similarly to the case of Y input,
the KME can be viewed measure-theoretically as a representer of µ in the Hilbert space (see Fig. 3).

We now give conditions under which the kernel mean embeddings exist. Throughout the rest of this
subsection, let µ ∈ P(Y), k a positive definite kernel on Y and H its associated RKHS.

1We have used an unconventional notation for the kernel mean embedding to distinguish from the symbol for measures.
In other literature, the common notation is µF for a distribution F .
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3.2 K2-ABC

(a) Ordinary RKHS representation:
z 7→ k(·, z) ∈ H

(b) Representation of Dirac mea-
sures: δz 7→ mδz ∈ H

(c) Representation of general mea-
sures: µ 7→ mµ ∈ H

Figure 3: Measure-theoretical interpretation of kernel mean embeddings. (a): Typical representation
of data z by some high-dimensional feature map defined through the kernel k. (b): An embedding of
data z into a high-dimensional feature space can be viewed measure-theoretically as an embedding of the
Dirac distribution. (c): Generalising the embedding of Dirac distributions, we can extend the concept
of feature maps to an arbitrary class of probability measures.

Proposition 3.1 (Existance of kernel mean embeddings). If EZ∼µ[
√
k(Z,Z)] < ∞, then mµ ∈ H and

EZ∼µ[f(Z)] = 〈f,mµ〉H, ∀f ∈ H.

A direct consequence of Prop. 3.1 is that the kernel mean embedding of µ exists so long as k is
bounded on Y. Most commonly used kernels, such as the Gaussian and the Laplace kernels, satisfy this
condition (see A). On the contrary, non-constant polynomial kernels may violate this assumption if µ
has an unbounded support. An example is a linear kernel with the Cauchy distribution.

Moreover, the second part of Prop. 3.1 says that the expectation with respect to µ of any f in the
RKHS can be computed as an inner product between the function itself and the embedding mµ. This
can be viewed as a reproducing property of the expectation operator in the RKHS [Muandet et al., 2017].

We shall use the celebrated Riesz representation theorem to prove Prop. 3.1. The proof of Riesz
representation Theorem lies beyond the scope of this essay (see e.g. Halmos [1982]).

Theorem 3.2 (Riesz representation). If L : H → R is a bounded linear operator on Hilbert space H,
then there exists h ∈ H such that, ∀f ∈ H, L[f ] = 〈f, h〉H.

Proof of Prop. 3.1. Define the functional Lµ : f 7→ EZ∼µ[f(Z)], for all f ∈ H. Then Lµ is a linear
operator. Moreover, for any f ∈ H and z ∈ Y, the representation property gives f(z) = 〈f, k(·, z)〉H.
Therefore,

|Lµ[f ]| = |EZ∼µ[f(Z)]| ≤ EZ∼µ[|f(Z)|] = EZ∼µ[|〈f, k(·, Z)〉H|] ≤ EZ∼µ
[
‖f‖H

√
k(Z,Z)

]
,

where the first inequality follows from Jensen’s inequality and the last step is due to the Cauchy-Schwarz
inequality. Therefore, Lµ is bounded if EZ∼µ[

√
k(Z,Z)] is. By Riesz representation theorem, there

exists h ∈ H such that Lµ[f ] = 〈f, h〉H. Choose f := k(·, z) for any z ∈ Y. Then h(z) = 〈k(·, z), h〉H =
Lµ[k(·, z)] =

∫
Y k(z, z′)µ(dz′). That is, h =

∫
Y k(·, z′)µ(dz′) = mµ.

3.2.2 Maximum Mean Discrepancy

Having constructed the kernel mean embedding, which maps a distribution to an element in the RKHS,
we can use the RKHS distance to quantify the discrepancy between embeddings, thus also between
distributions. This leads to the following maximum mean discrepancy.
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3 ABC WITH OPTIMAL TRANSPORT METRICS

Definition 3 (Maximum mean discrepancy). Given two probability measures µ and ν, their (squared)
maximum mean discrepancy (MMD) is the Hilbert space distance between their embeddings:

MMD2(µ, ν) = ‖mµ −mν‖2H = 〈mµ −mν ,mµ −mν〉H
= EY∼µEY ′∼µ[k(Y, Y ′)] + EZ∼µEZ′∼µ[k(Z,Z ′)]− 2EY∼µEZ∼ν [k(Y,Z)],

where Y, Y ′, Z, Z ′ are independent.

The second line holds because of the reproducing property of kernels: 〈k(·, y), k(·, z)〉H = k(y, z).
Here, we only consider characteristic kernels, for which the kernel mean embedding is injective [Muandet
et al., 2017; Fukumizu et al., 2008]. This therefore guarantees that MMD2(µ, ν) = 0 if and only if µ = ν,
i.e. no information is lost after the mapping. This is the core of the idea of K2-ABC. The characteristic
property also ensures that the MMD satisfies the three axioms of metrics on P(Y), where symmetry
and triangular inequality follows from the fact that ‖ · ‖H is a distance on the RKHS. Two examples
of characteristic kernels are the Gaussian and Laplacian kernels. We refer the reader to Muandet et al.
[2017] for details about the characteristic property.

The definition of MMD suggests a natural estimator. Given distributions µ, ν and mutually inde-
pendent random samples yi ∼ µ and zj ∼ ν, i = 1, . . . , n and j = 1, . . . ,m, an unbiased estimator for
MMD2(µ, ν) takes the form

M̂MD
2
(µ, ν) :=

1

n(n− 1)

n∑
i=1

∑
j 6=i

k(yi, yj) +
1

m(m− 1)

m∑
i=1

∑
j 6=i

k(zi, zj)−
2

nm

n∑
i=1

m∑
j=1

k(yi, zj). (6)

Unless otherwise mentioned, we assume samples are of equal size, so that n = m. Similar to the

case of Wp, we write DMMD(y1:n, z1:n) for M̂MD
2
(µ, ν). That this estimator is unbiased is obvious from

independence. Its form is in fact motivated from a more general family of the so-called U-statistics
[Gretton et al., 2007, Lemma 5]. We remark that this estimator may take negative values, even though
MMD is clearly non-negative.

MMD is closely related to the 1-Wasserstein distance. The kernel mean embedding (thus also MMD)
can be defined alternatively as the supremum of some objective function over the unit ball in the RKHS
(Gretton et al., 2012, p. 5; Muandet et al., 2017, p. 50), as outlined in Appendix B. In light of this,
both MMD and the 1-Wasserstein distance are in fact special cases of a more general class of metrics
on distributions, termed integral probability metrics [Müller, 1997]. The equivalence between the two
definitions of MMD and of W1 is known as the dual property. Using this dual definition, Theorem 21 of
Sriperumbudur et al. [2010] proves the inequality MMD2(µ, ν) ≤ W1(µ, ν), where the ground distance ρ
is the Euclidean norm. In fact,W1 is in turn bounded by the Sinkhorn divergence. We shall see that this
will help with the asymptotic analysis of the posterior concentration of MMD-ABC, which is defined in
the next subsection.

3.2.3 K2-ABC

We are now ready to present the K2-ABC algorithm, which uses the MMD as the data discrepancy
in Algorithm 2 of the soft ABC. Let µ̂y1:n and µ̂z1:n be the empirical distributions of the observation
y1:n and synthetic data z1:n, respectively. The K2-ABC algorithm in its original form employs a second
kernel κε on DMMD(y1:n, z1:n), typically of the form

κε(DMMD(y1:n, z1:n)) = exp

(
−DMMD(y1:n, z1:n)

2ε

)
, ε > 0.

It then uses the soft ABC paradigm to construct a set of weights to be assigned to each ABC
posterior sample. Overall, two kernels are used, hence the “2” in its name. This idea is similar to
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3.2 K2-ABC

setting the empirical kernel embedding
∑n

j=1 k(·, yi) to be the summary statistic. However, in that case,

‖s(y1:n)− s(z1:n)‖2H = MMD2(µ̂y1:n , µ̂z1:n) would have been biased. Moreover, we are reassured that all
possible differences (i.e. moments) between µ̂y1:n and µ̂z1:n can be captured by choosing a characteristic
k.

Obviously, the choice of the two kernels can heavily affect the effectiveness of K2-ABC. In fact, Sripe-
rumbudur et al. [2010] pointed out that the characteristic property of the kernel k used for the embedding
is the more crucial factor. They also proved that for any given characteristic kernel and bandwidth ε > 0,
there exist distributions µ 6= ν which MMD cannot distinguish up to ε, i.e. MMD2(µ, ν) ≤ ε. In our
implementation, we shall not use the K2-ABC in its original form of Eq. 3.2.3, but choose κ to be the
uniform kernel so that the results are comparable with WABC and KL-ABC. We call this the MMD-ABC
to distinguish from the original K2-ABC of Park et al. [2016].

3.2.4 Fast K2-ABC

The computation time of K2-ABC has a quadratic order in n and can scale badly with the data size.
Indeed, each computation of DMMD requires O(n2), so Algorithm 2 with MMD has an order O(Mn2)
overall, where M is the number of posterior samples. Park et al. [2016] discussed two alternatives to
speed it up — the linear-time MMD and approximations through random Fourier features.

The linear-time MMD simply replaces Eq. 6 with the following estimator that depends on the data
size linearly:

M̂MDL(µ, ν) :=
1

n− 1

n−1∑
i=1

k(yi, yi+1) +
1

m− 1

m−1∑
j=1

k(zj , zj+1)− 2

m

m∑
j=1

k(yj , zj),

where we have assumed without loss of generality that n ≤ m and denoted yi := y1+mod(i−1,n) as a cyclic
shift. When n = m, the resulting K2-ABC has cost O(Mn).

Alternatively, one can use random Fourier features, which aims to construct a random feature map
φ̂ : Y → RL such that k(z, z′) ≈ φ̂(z)>φ̂(z′), where L is the number of features. An estimator for

MMD2(µ, ν) ≈ EY∼µ[φ̂(Y )]>EY ′∼µ[φ̂(Y ′)] + EZ∼ν [φ̂(Z)]>EZ′∼ν [φ̂(Z ′)]− 2EY∼µ[φ̂(Y )]>EZ∼ν [φ̂(Z)]

=
∥∥∥EY∼µ[φ̂(Y )]− EZ∼ν [φ̂(Z)]

∥∥∥2

2

is then

M̂MD
2

rf(µ, ν) :=

∥∥∥∥∥ 1

ny

ny∑
i=1

φ̂(yi)−
1

nz

nz∑
i=1

φ̂(zi)

∥∥∥∥∥
2

2

,

where yi
iid.∼ µ and zi

iid.∼ ν. This estimator is biased but leads to O(MLn) for K2-ABC. It therefore
can reduce the computational burden when n � L. Park et al. [2016] showed through a number of
experiments that the random Fourier approximation yields much more accurate estimation than the
linear-time estimator in most cases.

To construct φ̂, one way is to use the Bochner’s theorem (Rudin [2011]). It states that, for any
translation-invariant kernel k (i.e. k(z, z′) = k̃(z−z′), for some k̃), there exists a measure Λ and positive
constant c such that

k̃(z − z′) = c

∫
exp(iw>(z − z′))dΛ(w) = cEW∼Λ[cos(W>(z − z′))]

= 2cEU∼Unif(−π,π)[EW∼Λ{cos(W>z + U) cos(W>z′ + U)|U}].
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3 ABC WITH OPTIMAL TRANSPORT METRICS

Therefore, one can draw Wj ∼ Λ and Uj ∼ Uniform(−π, π), j = 1, . . . , L, to approximate k. A
Gaussian k of the form presented in Appendix A corresponds to c = 1 and N (0, σ2In) for Λ. It follows
that, for j = 1, . . . , L,

φ̂j(z) =

√
2

L
cos(W>j z + Uj).

3.3 KL-ABC

Another discrepancy metric that has been studied with ABC is the Kullback-Leibler (KL) divergence,
also known as the information divergence or relative entropy [Kullback and Leibler, 1951; MacKay, 2003].

Definition 4 (KL divergence). Given two probability measures µ, ν ∈ P(Y) that attain densities
µ(dy), ν(dz) with respect to the Lebesgue measure, the KL-divergence is defined to be

KL(µ‖ν) =

∫
µ(dy) log

µ(dy)

ν(dy)
. (7)

It follows from a simple application of the Jensen’s inequality that KL(µ‖ν) is non-negative. More-
over, it is finite whenever µ is absolutely continuous with respect to ν, and zero if and only if µ = ν
[MacKay, 2003]. It is, however, not a metric in the strict sense, as it needs not obey symmetry and the
triangular inequality. A consistent estimator for Eq. 7 is

DKL(y1:n, z1:n) :=
dy
n

n∑
i=1

log

 min
j=1,...,n

‖yi − zj‖2

min
j 6=i

j=1,...,n

‖yi − yj‖2

+ log
n

n− 1
, (8)

where yi
iid.∼ µ, zj

iid.∼ ν, and dy is the dimension of data yi as before. This estimator is a special case of
Eq. 14 in Perez-Cruz [2008], which is motivated from a k-nearest neighbour density estimator. Perez-
Cruz [2008] also established the almost sure convergence of this estimator. We defer this rather technical
proof to the appendix (see C). The KL-ABC of Bai Jiang [2018] uses Eq. 8 as the discrepancy metric
between the observed and synthetic data.

It is known that the (discretized) KL divergence between the empirical distributions of µ∗ and µθ
is minimized by the maximum likelihood estimator (MLE) [Bai Jiang, 2018]. KL-ABC shares the same
idea and can be essentially thought as using MLEs as the summary statistic to quantify dis-similarity
between distributions.

3.3.1 Computation

The estimation of KL-divergence by Eq. 8 boils down to finding the nearest neighbours. As a result, a
call to the estimator Eq. 8 require O(n log n), compared with O(n3) for the Wasserstein distances and
O(n2) for the MMD. KL-ABC therefore has this computational benefit of admitting a sub-quadratic
cost in data size. However, as discussed previously, the KL divergence essentially quantifies discrepancy
only in terms of the MLEs, whereas the Wasserstein distances and the maximum mean embedding are
able to capture all differences in moments up to some arbitrary order. As a result, KL-ABC has the
caveat of “information leakage”. Moreover, as mentioned on page 4 of Sriperumbudur et al. [2010] and
the references therein, the estimator for the KL divergence exhibits arbitrarily slow convergence rates
depending on the distribution, whereas W1 and MMD have good convergence behaviours.
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3.4 Sequential Sampling of the ABC Posterior
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Figure 4: Discrepancy metrics evaluated at data generated from N (0, θIdy) for varying θ ∈ [0.1, 10].
Here, the observed data y1:n is generated with parameter θ∗ = 4, as marked by the black dotted lines.

W1 MMD2 KL divergence
Dimensions 1 2 5 10 1 2 5 10 1 2 5 10

Time (milliseconds) 2920 4900 4690 4970 73.1 139 285 628 5.05 6.81 13.9 90.0

Table 3: Computational time (in milliseconds) for one evaluation of the three discrepancy metrics in
different dimensions. Results are averages over 100 runs and rounded to 3 significant figures. There is a
clear gap in the run times of W1 in univariate and multivariate cases.

3.4 Sequential Sampling of the ABC Posterior

As illustrated in section 2.3, the acceptance threshold ε is a crucial parameter that trades-off computa-
tional effort and the quality of the posterior samples. A computationally effective approach to anneal
ε is through a sequential Monte Carlo (SMC) algorithm introduced by Del Moral et al. [2012] and im-
plemented in Bernton et al. [2019a]. Specifically, this algorithm relies on a transition kernel to select a
sequence of thresholds (εt)0≤t≤T . It begins by drawing M posterior samples with ε0 =∞, for which the
ABC posterior is effectively the prior. Upon choosing εt−1, it determines εt such that αM samples from
the previous step are accepted, for some user-specified α ∈ (0, 1). A resampling and rejuvenation step is
then performed to obtain M samples using the transition kernel and the current threshold εt, and the
algorithm proceeds. The output is M posterior samples associated with εT .

Although any MCMC kernel can be used as the transition kernel, in our implementation, we adopt
the r-hit kernel of Lee [2012], following the implementation in Bernton et al. [2019a]. In all experiments
in section 5, we set M = 1024 and α = 50%. We choose r = 2 in the r-hit kernel and a mixture
of multivariate normal distributions with 5 components as the proposal of the MCMC steps. This
framework is shown to be more advantageous than vanilla rejection ABC [Lee and  Latuszyński, 2014].

3.5 Comparing Discrepancy Metrics

We provide a concrete example where we compare the three discrepancy metrics introduced earlier
between different distributions. We consider the model N (0, θIdy), where dy ∈ N is the dimension of the
data and θ ∈ R+ is the parameter. n = 1000 i.i.d. observations are drawn with θ∗ = 4. We then generate
z1:n from the model using a grid of 500 values of θ equi-spaced on interval [0.1, 10]. We plot θ against
DW1(y1:n, z1:n), DMMD(y1:n, z1:n) and DKL(y1:n, z1:n) in Fig. 4 and list their required computational times
in Table 3 (recall that DMMD(y1:n, z1:n) denotes the squared MMD estimator 6). All computational times
are estimated by averaging over 100 runs using R [R Core Team, 2019] and an 1.3 GHz Intel Core I5
processor.
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4 ASYMPTOTIC BEHAVIOURS

We remark that the (squared) MMD is indeed always no larger than W1 as expected. The minima
of the the metrics shift away from the true parameter θ∗ = 4 (black dotted lines) as dimension increases,
which is an example of the curse of dimensionality. This is particularly not surprising for the KL
divergence, as it is known that the KL divergence is minimized at the MLE, which biased for θ∗ in
this example. Finally, the 1-Wasserstein distance and MMD are indeed much more computationally
demanding than KL divergence.

4 Asymptotic Behaviours

In this section, we investigate the convergence of the ABC posterior as (i) n→∞ when ε is fixed, and (ii)
ε → 0 when y1:n is fixed, which we call the large-sample and small-tolerance asymptotics, respectively.
The latter is a generalization of Proposition 2 in Bernton et al. [2019a] to soft ABC posteriors with
kernels satisfying some regularity conditions. We also present an upper bound on the concentration rate
of WABC when n → ∞ and ε decreases sufficiently fast, which was proven by Bernton et al. [2019a],
and argue how a similar bound for MMD-ABC can be obtained as a corollary.

4.1 Large-Sample Asymptotic

The following result establishes the convergence of the ABC posterior as we obtain more and more data
while keeping the threshold fixed. Later in the section, we shall show that this convergence is also
achieved with a sequence of thresholds that converges to some positive ε from above (see Cor. 4.3).

Proposition 4.1 (Large-sample asymptotic). Given a metric D on P(Y), let D(µ̂y1:n , µ̂θ,z1:n) be an es-
timator for D(µ∗, µθ) that is consistent for π−almost all θ ∈ Θ. Fix ε > 0. Assume P(D(µ∗, µθ) ≤ ε) > 0
and P(D(µ∗, µθ) = ε) = 0. Then for all h ∈ L1(π) := {h : Θ→ R : h is measurable and

∫
Θ |h(θ)|π(dθ) <

∞}, we have
E[h(θ)|D(µ̂n, µ̂θ,z1:n) ≤ ε]→ E[h(θ)|D(µ∗, µθ) ≤ ε]. (9)

In particular, πεy1:n
converges strongly to π(·|D(µ∗, µθ) ≤ ε), i.e. πεy1:n

(A) → π(A|D(µ∗, µθ) ≤ ε) for all
measurable A ⊂ Θ.

This result implies that the ABC posterior for a fixed ε > 0 does not converge to the true posterior,
but only to a restricted one. This aligns with the analysis of the Exponential model in section 2.3.1.

When the distributions are continuous, the conditions that P(D(µ∗, µθ) ≤ ε) > 0 and P(D(µ∗, µθ) =
ε) = 0 are mild and hold for many standard metrics, e.g. Wasserstein, MMD and KL divergence. One
caveat, however, is that D(µ̂y1:n , µ̂z1:n) needs to be consistent for D(µ∗, µθ). If the data discrepancy D
metrizes the space of distributions, one can prove that the distance between two convergent sequences of
distributions tends to the distance between their limiting distributions. This is known as the continuity
in the metric D; see D.2 for detailed discussions. Wasserstein distances obey this property, as it is
known that Wp metrizes Pp(Y), the Wasserstein space of order p [Villani, 2009, Theorem 6.8]. For
MMD, Theorem 12 of Simon-Gabriel and Schölkopf [2018] implies that, with a continuous, characteristic
kernel such as the Gaussian and Laplacian kernels, MMD metrizes P(Y).

The proof of Prop. 4.1 is a direct application of Lemma S3.1 from Miller and Dunson [2019]. We
present a more general version with a convergent sequence of random variables (Vn)n≥1 instead of a
single one V . An alternative proof, which replies on the Lévy’s upward theorem, is given by Theorem 1
of Bai Jiang [2018].

Lemma 4.2 (Miller and Dunson [2019]). Let U, (Un)n≥1, V, (Vn)n≥1,W ∈ R∪ {∞} be random variables

such that P(U ≤ V ) > 0, P(U = V ) = 0, Un
a.s.−−−→
n→∞

U, Vn
a.s.−−−→
n→∞

V and E[|W |] < ∞. It follows that

E[W |Un ≤ Vn]→ E[W |U ≤ V ], as n→∞.
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4.2 Small-Tolerance Asymptotic

Proof of Lemma 4.2. Since P(U = V ) = 0, Un
a.s.−−→ U and Vn

a.s.−−→ V , there exists a set of probability
one on which U 6= V , Un → U and Vn → V . On this set, 1(Un ≤ Vn) → 1(U ≤ V ). Hence,
W1(Un ≤ Vn)

a.s.−−→ W1(U ≤ V ). Note also that |1(U ≤ V )| ≤ 1, |W1(U ≤ V )| ≤ |W | and E[|W |] <∞
by assumption. Applying dominated convergence theorem [Bartle, 1995] yields,

E[1(Un ≤ Vn)]→ E[1(U ≤ V )],

E[W1(Un ≤ Vn)]→ E[W1(U ≤ V )].

By assumption, P(U ≤ V ) > 0. Hence, E[1(Un ≤ Vn)] = P(Un ≤ Vn) > 0 for n large enough, and

P(W |Un ≤ Vn) =
E[W1(Un ≤ Vn)]

E[1(Un) ≤ Vn]
→ E[W1(U ≤ V )]

E[1(U) ≤ V ]
= P(W |U ≤ V ).

Proof of Prop. 4.1. Apply Lemma 4.2 with Un = D(µ̂y1:n , µ̂θ,z1:n), U = D(µ∗, µθ), Vn = V = ε and

W = h. By assumption, P(U ≤ ε) > 0, P(U = ε) = 0, Un
a.s.−−→ U as n→∞ and E[|W |] <∞. The result

follows.

We remark that, although we have chosen a fixed threshold in the above proof, it can be easily
relaxed to a monotonically decreasing sequence of thresholds (εn)n≥1 with limit ε > 0.

Corollary 4.3 (Large-sample asymptotic with annealing thresholds). Under the same assumptions in
Prop. 4.1, let (εn)n≥1 be a monotonically decreasing sequence of thresholds that converges to a positive
limit ε. It follows that πεny1:n

(A)→ π(A|D(µ∗, µθ) ≤ ε) for all measurable A ∈ Θ.

Proof. Following the proof of Prop. 4.1 with Vn = εn and V = ε, we have the desired result.

4.2 Small-Tolerance Asymptotic

We now present the asymptotic behaviour as ε decreases to 0 while y1:n is kept fixed. This result is
similar to Proposition 2 of Bernton et al. [2019a] but is slightly more general — instead of restricting to
rejection ABC, we consider the posterior resulted from soft ABC that uses a general kernel satisfying
some mild conditions. We first present the result for rejection ABC with discrepancy D.

Proposition 4.4 (Proposition 2 of Bernton et al. [2019a]). Let µ
(n)
θ attain a continuous (in metric D)

density f
(n)
θ . Assume

1. sup
θ∈Θ\NΘ

f
(n)
θ (y1:n) <∞, for some NΘ ⊂ Θ such that π(NΘ) = 0.

2. There exists ε > 0 such that sup
θ∈Θ\NΘ

sup
z1:n∈Bε(y1:n)

f
(n)
θ (z1:n) < ∞, where Bε(y1:n) := {z1:n ∈ Yn :

D(y1:n, z1:n) ≤ ε}.

Suppose also that D is continuous in the sense that D(y1:n, z1:n) → D(y1:n, z
′
1:n) whenever z1:n → z′1:n

component-wise in metric ρ. If either

3.1. f
(n)
θ is n−exchangeable, i.e. f

(n)
θ (y1:n) = f

(n)
θ (yσ(1:n)), for all permutations σ ∈ Sn, and D(y1:n, z1:n) =

0 if and only if y1:n = zσ(1:n) for some σ ∈ Sn, or

3.2. D(y1:n, z1:n) = 0 if and only if y1:n = z1:n,
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4 ASYMPTOTIC BEHAVIOURS

then, for y1:n fixed, the ABC posterior πεy1:n
converges strongly to the posterior π(·|y1:n).

A consequence of Prop. 4.4 is that πεy1:n
converges to the true posterior as ε decreases to 0, when y1:n

is kept fixed. It however does not give any information about the rate of convergence. Neither does it
guarantees that the sequential sampling scheme of section 3.4 with adaptively selected thresholds will
be successful in a reasonable time.

Conditions 1 and 2 in Prop. 4.4 assert that, for π−almost all θ ∈ Θ, f
(n)
θ is bounded at y1:n and in a

neighbourhood around y1:n. They may be hard to check in practice, since we typically do not have access
to the functional form of the data generating process. They are, however, rather mild if we restrict Θ
to a bounded set. Conditions 3.1 and 3.2 place assumptions on the ability of D to distinguish between
y1:n and z1:n. The former applies to Wasserstein, while the latter holds for MMD and KL-divergence.

As also remarked previously, this result can be generalized to soft ABC posteriors. An additional
assumption required is that the kernel satisfies the so-called concentration condition (definition 5). This
is similar to but different from the concentration condition (Condition K) of Rubio and Johansen [2013]
in that they assume a stronger condition where κε(y1:n, ·) is zero outside the ball Bε(y1:n) = {z1:n ∈ Yn :
D(y1:n, z1:n) ≤ ε}, whereas we allow it to decrease fast enough to 0.

We shall prove the more general result first then prove Prop. 4.4 as a corollary.

Definition 5 (Concentration condition). A kernel κε = ε−1κ(·/ε) with bandwidth ε > 0 is said to satisfy
the concentration condition with respect to some metric D on the data space if

sup
z1:n∈Yn\Bε(y1:n)

κε(D(y1:n, z1:n)) = sup
z1:n∈Yn\Bε(y1:n)

κε(D(z1:n, y1:n))→ 0,

as ε→ 0.

Proposition 4.5 (Small-tolerance asymptotic). Let κε be a kernel satisfying the concentration condi-
tion 5. Suppose the same assumptions in Prop. 4.4 hold. If, instead of assumption 2, we have

4. sup
θ∈Θ\NΘ

sup
z1:n∈Yn

f
(n)
θ (z1:n) <∞,

then the soft ABC posterior πεy1:n
with kernel κε converges strongly to the posterior π(·|y1:n).

Proof of Prop. 4.5. Fix y1:n and let ε be as in assumption 2. Pick 0 < ε < ε, and denote the normalized
“quasi-likelihood” as

qε(θ) :=

∫
Yn κε(D(y1:n, z1:n))f

(n)
θ (z1:n)dz1:n∫

Yn κε(D(y1:n, z′1:n))dz′1:n

The intuition behind the definition of qε(θ) is that it behaves as a likelihood function in the soft ABC
posterior formula (Eq. 2). Write

Kε(y1:n, z1:n) :=
κε(D(y1:n, z1:n))∫

Yn κε(D(y1:n, z′1:n))dz′1:n

,

so that qε(θ) =
∫
Yn Kε(y1:n, z1:n)f

(n)
θ (z1:n)dz1:n. Note that if a uniform kernel is used as in rejection

ABC, then κε is the indicator function on the ball Bε(y1:n), and Kε corresponds to the uniform density

on Bε(y1:n). To proceed, we shall prove (i) qε(θ)
a.s.−−→ f

(n)
θ (y1:n) in θ, and (ii) qε is bounded almost surely,

then we shall apply the dominated convergence theorem to conclude.
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4.2 Small-Tolerance Asymptotic

For (i), note first that Bε(y1:n) is compact by continuity of D. Now, ∀θ ∈ Θ\NΘ,∣∣∣qε(θ)− f (n)
θ (y1:n)

∣∣∣ =

∣∣∣∣∫
Yn
Kε(y1:n, z1:n)(f

(n)
θ (z1:n)− f (n)

θ (y1:n))dz1:n

∣∣∣∣ (10)

≤
∫
Bε(y1:n)

Kε(y1:n, z1:n)
∣∣∣f (n)
θ (z1:n)− f (n)

θ (y1:n)
∣∣∣ dz1:n

+

∫
Yn\Bε(y1:n)

Kε(y1:n, z1:n)
∣∣∣f (n)
θ (z1:n)− f (n)

θ (y1:n)
∣∣∣ dz1:n, (11)

where in Eq. 10 we used that Kε(y1:n, ·) integrates to 1 on Yn. The first integral in Eq. 11 can be
bounded as follows∫

Bε(y1:n)
Kε(y1:n, z1:n)

∣∣∣f (n)
ε (z1:n)− f (n)

θ (y1:n)
∣∣∣ dz1:n ≤ sup

z1:n∈Bε(y1:n)

∣∣∣f (n)
θ (z1:n)− f (n)

θ (y1:n)
∣∣∣

=
∣∣∣f (n)
θ (zε1:n)− f (n)

θ (y1:n)
∣∣∣ ,

for some zε1:n ∈ Bε(y1:n) by compactness of Bε(y1:n). The first inequality holds again because Kε(y1:n, ·)
is non-negative and integrates to 1 on Yn. By continuity of f

(n)
θ , either ∩ε∈QBε(y1:n) = {yσ(1:n) : σ ∈ Sn}

under condition 3.1 in Prop. 4.4, or ∩ε∈QBε(y1:n) = {y1:n} under 3.2. In both cases, |f (n)
θ (zε1:n) −

f
(n)
θ (y1:n)| → 0 as ε→ 0, by continuity of f

(n)
θ .

For the second integral, recall that, by assumption, f
(n)
θ (z1:n) ≤ sup

θ∈Θ\NΘ

sup
z1:n∈Yn

f
(n)
θ (z1:n) := C < ∞

for any z1:n ∈ Yn. Therefore,∫
Yn\Bε(y1:n)

Kε(y1:n, z1:n)
∣∣∣f (n)
θ (z1:n)− f (n)

θ (y1:n)
∣∣∣ dz1:n ≤ 2C

∫
Yn
Kε(y1:n, z1:n)1(D(y1:n, z1:n) > ε)dz1:n.

Now, for any z1:n,
∣∣Kε(y1:n, z1:n)1(D(y1:n, z1:n) > ε)

∣∣ is bounded from above by Kε(y1:n, z1:n), which is
integrable over Yn. The concentration condition of κε implies that κε(D(y1:n, z1:n))1(D(y1:n, z1:n) >
ε)→ 0 pointwise in z1:n, as ε→ 0. Hence, Kε(y1:n, z1:n)1(D(y1:n, z1:n) > ε)→ 0 pointwise as ε→ 0. By
dominated convergence theorem,

lim
ε→0

∫
Yn
Kε(y1:n, z1:n)1(D(y1:n, z1:n) > ε)dz1:n =

∫
Yn

lim
ε→0

Kε(y1:n, z1:n)1(D(y1:n, z1:n) > ε)dz1:n = 0.

The second integral therefore converges to 0. We conclude from Eq. 11 that qε
a.s.−−→ f

(n)
θ (y1:n). Now,

∀ε ≤ ε,

sup
θ∈NΘ

qε(θ) = sup
θ∈NΘ

∫
Yn
Kε(y1:n, z1:n)f

(n)
θ (z1:n)dz1:n ≤ sup

θ∈NΘ

sup
z1:n∈Bε(y1:n)

f
(n)
θ (z1:n) ≤ C <∞,

where the first inequality holds because
∫
Yn Kε(y1:n, z1:n)dz1:n = 1. Hence, by dominated (or bounded)

convergence theorem again, for any measurable A ⊂ Θ,∫
A
qε(θ)π(dθ)→

∫
A
f

(n)
θ (y1:n)π(dθ).

In particular,
∫

Θ q
ε(θ′)π(dθ′) > 0 for ε small enough, and

lim
ε→0

∫
A
πεy1:n

(dθ) =
limε→0

∫
A q

ε(θ)π(dθ)

limε→0

∫
Θ q

ε(θ′)π(dθ′)
=

∫
A f

(n)
θ (y1:n)π(dθ)∫

Θ f
(n)
θ (y1:n)π(dθ)

=

∫
A
π(dθ|y1:n).
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4 ASYMPTOTIC BEHAVIOURS

Proof of Prop. 4.4. We follow the same idea in the proof for Prop. 4.5, with a simplification that the
second integral in Eq.11 is now zero, because κε(D(y1:n, z1:n)) = 1(D(y1:n, z1:n) ≤ ε) is supported only
on Bε(y1:n).

4.3 Posterior Concentration Rates

Prop. 4.5 says that the ABC posterior concentrates on the true posterior as ε→ 0 for fixed y1:n, but gives
no quantitative information on the concentration rate. Bernton et al. [2019a] provided a quantitative
upper bound on the rate of convergence of the WABC posterior under mild assumptions on the data
generating process and the prior. We summarize this result and its assumptions below, and argue how
a similar bound on the rate of convergence of the MMD-ABC posterior can be obtained similarly .

More formally, we say a sequence of distributions πy1:n on Θ depending on data y1:n is consistent at
some θ∗ if, for all δ > 0, E[πy1:n({θ ∈ Θ : ρΘ(θ, θ∗) > δ})] → 0 as n → ∞, where the expectation is

taken over µ
(n)
∗ , the distribution of y1:n. The rate of convergence of πy1:n is said to be upper bounded

by a sequence (δn)n≥1 if E[πy1:n({θ ∈ Θ : ρΘ(θ, θ∗) > δn})] → 0. The fastest decaying sequence (δn)n≥1

is called the rate of convergence of πy1:n .

Proposition 3 in Bernton et al. [2019a] establishes an upper bound of the rate of convergence of the
WABC posterior around θ∗ ∈ argminθ∈ΘWp(µθ, µ∗) as n → ∞ and as ε decreases to ε∗ := Wp(µθ∗ , µ∗).
It replies on the following assumptions.

Assumption 1. Wp(µ̂y1:n , µ∗)→ 0 in P-probability as n→∞.

Assumption 2. For all ε > 0, µ
(n)
θ (Wp(µθ, µ̂θ,z1:n) > ε) ≤ c(θ)fn(ε), for some sequence of functions

fn(ε) that are strictly decreasing in ε for fixed n and fn(ε) → 0 as n → ∞ for fixed ε, and c : Θ → R+

is π-integrable such that there exists some c0, δ0 > 0 satisfying

sup
{θ:Wp(µθ,µ∗)≤δ0+ε∗}

c(θ) ≤ c0.

Assumption 3. There exists some L, cπ > 0 such that for ε small enough,

π({θ ∈ Θ :Wp(µθ, µ∗) ≤ ε+ ε∗}) ≥ cπεL.

Assumption 1 asserts that the observed data y1:n form an empirical distribution µ̂y1:n that converges
to the true likelihood µ∗ as n → ∞ in the discrepancy metric, in this case, the Wasserstein distances.
Assumption 2 places a condition on how fast µ̂θ,z1:n concentrates around µθ in Wp as n → ∞, and
assumption 3 asserts that the prior puts enough mass on those θ ∈ Θ that yields µθ close to µ∗. The
main result is the following [Bernton et al., 2019a, Proposition 3]:

Proposition 4.6. Under assumptions 1 − 3, let (εn)n≥0 be a sequence of positive numbers such that
εn → 0, fn(εn)→ 0 and P(Wp(µ̂y1:n , µ∗) ≤ εn)→ 1, as n→∞. Then there exists C ∈ (0,∞) such that,
for any R ∈ (0,∞), the WABC posterior with threshold εn + ε∗ satisfies

πεn+ε∗
y1:n

({θ ∈ Θ :Wp(µθ, µ∗) > ε∗ + 4εn/3 + f−1
n (εLn/R)}) ≤ C

R
,

with P-probability going to 1 as n→∞.
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4.4 WABC with Independent and Identically Distributed Data

Before presenting its proof, we make a few remarks about the implications of Prop. 4.6. Firstly, the
inverse f−1

n (ε) is well-defined due to the strict monotonicity of fn(ε). If we can find fn(ε) such that
f−1
n (εLn/R) → 0 for all R > 0, then Prop. 4.6 implies that, with probability going to 1, the WABC

posterior probability of the set of θ that yields µθ far from the “best” µθ∗ is arbitrarily small, where
“best” is in the sense that µθ∗ is the distribution in the model that is closest to the true data generating
process µ∗ in terms of Wp. The exact bound will depend on the c(θ) and fn in assumption 2.

To find an upper bound on the concentration rate of WABC, Bernton et al. [2019a] make the following
two additional assumptions. Assumption 4 says that Wp well-separates θ∗ in the parameter space, while
assumption 5 can be viewed as a “Hölder continuity” condition for ρΘ in the discrepancy metric Wp.

Assumption 4. θ∗ = argminθ∈ΘWp(µθ, µ∗) exists, and is well-separated. That is, ∀δ > 0, there exists
δ′ > 0 such that

inf
θ∈Θ:ρΘ(θ,θ∗)>δ

Wp(µθ, µ∗) >Wp(µθ∗ , µ∗) + δ′ = ε∗ + δ′.

Assumption 5. The parameters θ are identifiable, and there exists K,α > 0 and an open neighbourhood
U ⊂ Θ containing θ∗ such that, ∀θ ∈ U , ρΘ(θ, θ∗) ≤ K(Wp(µθ, µ∗)− ε∗)α.

Corollary 4.7. Under assumptions 1−5, let (εn)n≥1 be a sequence of positive numbers such that εn → 0,
fn(εn)→ 0, f−1

n (εLn)→ 0 and P(Wp(µ̂y1:n , µ∗) ≤ εn)→ 1, as n→∞. Then there exists C ∈ (0,∞) such
that, for any R ∈ (0,∞), the WABC posterior with threshold εn + ε∗ satisfies

πεn+ε∗
y1:n

({θ ∈ Θ : ρΘ(θ, θ∗) > K(4εn/3 + f−1
n (εLn/R))α}) ≤ C

R
,

with P-probability going to 1 as n→∞.

Proofs of Prop. 4.6 and Cor. 4.7 can be found in appendix D. As remarked in Bernton et al. [2019a],
assumptions 1− 5 seem technical at first sight and can be difficult to verify in practice. We now discuss
their applicability to two specific metrics — the 1-Wasserstein distance and the MMD — when the
observed data are i.i.d.

4.4 WABC with Independent and Identically Distributed Data

The case of WABC with i.i.d. data was also discussed by Bernton et al. [2019a]. We shall follow their
approach to verify assumptions 1 and 2. The other ones can be check in the same way as for MMD, thus
are deferred to section 4.5. Throughout, let p ∈ [1,∞) and Pp(Y) be the associated Wasserstein space
of order p.

When yi
iid.∼ µ∗, assumption 1 essentially follows from the fact thatW1 metrizes the Wasserstein space

Pp(Y) (see Appendix D.2). More specifically, Theorem 3 in Varadarajan [1958] shows the existence of a
set E1 with P(E1) = 1 on which µ̂y1:n converges to µ∗ in distribution. Moreover, by the strong law of large
numbers, there exists P-a.s. E2 and y0 ∈ Y such that

∫
Y ρ(y0, z)

pµ̂y1:n(w)(dz) →
∫
Y ρ(y0, z)

pµ∗(dz) for
all w ∈ E2. It follows that µ̂y1:n converges weakly to µ∗ on E1∩E2 by the definition of weak convergence
(see definition 9 in Appendix). Now, Theorem 6.8 of Villani [2009] shows that weak convergence implies
Wp(µ̂y1:n , µ∗)→ 0 in Pp(Y) (metrizable property of W1). Hence, assumption 1 holds on E1 ∩ E2.

For assumption 2, by Theorem 2 in Fournier and Guillin [2015], when ε < 1, there exists c(θ), C(θ) >

0 such that µ
(n)
θ (Wp(µθ, µ̂θ,n) > ε) ≤ C(θ) exp(−c(θ)nεk), where k = max(dy, 2p). To proceed, we

assume as in Bernton et al. [2019a] that c(θ), C(θ) can be replace by constants c, C > 0 and define
fn : ε 7→ exp(−cnεk) so that Assumption 2 holds. Assuming the rate of convergence of µ̂y1:n to µ∗ is no
slower than that of µ̂θ,z1:n to µθ, the condition on εn in Prop. 4.6 holds with εn := cε((log n)/n)1/k for
some cε > 0. Indeed, note that

20



4 ASYMPTOTIC BEHAVIOURS

1. εn → 0,

2. fn(εn) = exp(−cn c
k
ε logn
n ) = n−cc

k
ε → 0, and

3. For any R > 0,

f−1
n (εL/R) =

[
− 1

cn
log

(
cLε
R

(
log n

n

)L/k)]1/k

=

[
− 1

cn
log

(
cLε
R

)
− L

kc

log(log n)

n
+
L

kc

log n

n

]1/k

→ 0.

For large n, the concentration rate in Prop. 4.6 and Cor. 4.7, K(4εn/3 + f−1
n (εLn/R)), behaves as

(log n/n)α/k. We remark that the dimension dy comes in k and this bound worsens rapidly as dy
increases — an example of the curse of dimensionality.

4.5 MMD-ABC with Independent and Identically Distributed Data

We show a similar bound on the concentration rate for the K2-ABC posterior. In addition to assumptions
1−5, the proofs of Prop. 4.6 and Cor. 4.7 only require that the data discrepancy (in that caseWp) satisfies
the triangular inequality and symmetry; see D.1 for more detailed discussions. A direct consequence is
that any other symmetric metric satisfying assumptions 1 − 5 and the triangular inequality yields the
same upper bound. Recall from section 3.2.2 that MMD with a characteristic kernel is a metric. Hence,
it remains to check whether assumptions 1, 2, 4 and 5 also hold for MMD (assumption 3 relies on the
user-specified prior).

For assumption 1, Theorem 12 of Simon-Gabriel and Schölkopf [2018] shows that, provided the kernel
is continuous and characteristic (e.g. the Gaussian and Laplacian kernels), MMD metrizes P(Y). That is,
a sequence of probability measures converges in MMD if and only if it converges weakly (see definition 8
in Appendix). In particular, by the same argument in the case of Wp, assumption 1 holds on some
E1 ∩ E2 of P-probability one.

For assumption 2, we begin with the same choice of fn : ε 7→ exp(−cnεk) as in the case of WABC, so

that µ
(n)
θ (Wp(µθ, µ̂θ,z1:n) > ε) ≤ C exp(−cnεk). Recall that MMD lower-bounds W1. Hence,

µ
(n)
θ (MMD(µθ, µ̂θ,z1:n) > ε) ≤ µ(n)

θ (W1(µθ, µ̂θ,z1:n) > ε) ≤ C exp(−cnεk),

and assumption 2 holds with the same choice of fn.

Assumption 4 holds under further assumptions on the continuity of the metric in terms of ρΘ, as
discussed in the supplementary material of Bernton et al. [2019a]. We generalize their result to give
sufficient conditions under which assumption 4 holds for an arbitrary metric D (see appendix D.1).
Both the Wasserstein distances and MMD satisfy these conditions.

To check assumption 5, we suggest numerical evidence to be provided in a case-specific way. As
a concrete example, we consider the same setup in section 3.5, where the model is N (0, θId) and the
parameter is θ ∈ R+. The metric on the parameter space is chosen to be the Euclidean norm, i.e.
ρΘ(θ1, θ2) = ‖θ1 − θ2‖. For each synthetic data z1:n generated, MMD(µ̂y1:n , µ̂z1:n) and W1(µ̂y1:n , µ̂z1:n)
are computed and plotted against ‖θ − θ∗‖. This is repeated for dimensions d = 1, 2, 5, 10, as shown in
Fig. 5. The curves exhibit a linear or sublinear shape, which implies that one can find constants k and
α for which the inequality in assumption 5 holds for both MMD and W1.

Finally, if we assume that the rate of convergence of µ̂n to µ∗ is at least as fast as that of µ̂θ,z1:n to
µθ, then the condition on εn in Prop. 4.6 holds with εn = cε((log n)/n)1/k for some cε > 0, by the same
reasoning as in WABC with i.i.d. data. We therefore have the same bound on rate of convergence in
Prop. 4.6 and Cor. 4.7 for MMD.
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(b) d = 2.
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(c) d = 5.
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Figure 5: W1 and MMD2 between empirical distributions formed by observed and synthetic data gener-
ated from N (0, θId) with different θ, plotted against ρΘ(θ, θ∗). The observed data is drawn with θ∗ = 4.
Synthetic data z1:n are drawn with θ equi-spaced on [0.1, 10].

5 Experiments

We run experiments on four benchmark models using WABC, MMD-ABC and KL-ABC. As a baseline,
we also include the vanilla rejection ABC with case-specific summary statistics and the Euclidean norm
as the data discrepancy, which we call Euclidean ABC.

For each method, we use the SMC framework introduced in section 3.4 to tune the thresholds ε.
Unless otherwise mentioned, we use a fixed budget of 105 model simulations and 2048 particles in the
SMC sampler. 1024 posterior samples yielding the smallest distances are kept for the posterior plots.

All experiments were based on R [R Core Team, 2019] and an Intel Core i5 (1.3 GHz). For the WABC
and the SMC algorithm, we relied on the package winference2 of Bernton et al. [2019a]. We have also
built upon their source code for the cpp implementation of MMD. In particular, a Gaussian kernel is
used for the embedding and the bandwidth is set to be the median of {‖yi − yj‖1 : i, j = 1, . . . , n}, as
suggested in Park et al. [2016] (see appendix A). The KLx.divergence function from the FNN package
[Beygelzimer et al., 2019] was used to estimate the KL divergence. Code for reproducing all experiments
is available at https://github.com/XingLLiu/approximate-bayesian-computation.

5.1 Bivariate Gaussian Mixture Model

We begin with a bivariate Gaussian mixture model. 500 i.i.d. data are drawn from yi|ui = 0 ∼
N ((µ01, µ02)ᵀ,Σ0) and yi|ui = 1 ∼ N ((µ11, µ12)ᵀ,Σ1), where ui ∼ Bernoulli(p), and the known co-

2winference codebase: https://github.com/pierrejacob/winference.
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Figure 6: Posteriors of the five parameters of the bivariate Gaussian mixture model. The true parameters
p = 0.3, µ01 = µ02 = 0.7, µ11 = µ12 = −0.7 are shown by the black dotted lines.

variance matrices are

Σ0 =

(
0.5 −0.3
−0.3 0.5

)
, Σ1 =

(
0.25 0

0 0.25

)
.

The parameters of interest θ = (p, µ01, µ02, µ11, µ12)ᵀ consist of the mixture ratio and the means.
We choose θ∗ = (0.3, 0.7, 0.7,−0.7,−0.7)ᵀ to be the true parameters and assign independent priors
p ∼ Uniform(0, 1) and µjk ∼ Uniform(−1, 1), for j = 0, 1 and k = 1, 2. For the Euclidean ABC, we use a
5-dimensional summary statistic consisting of the two marginal sample means, the two marginal sample
variances and the sample covariance. Results are shown in Fig 6.

Using a total budget of 105 simulations, all except the Euclidean ABC successfully picked up the
true parameters and exhibit a single mode (see Fig. 7). This is not surprising given the simple set-up
of this problem. In particular, Wasserstein ABC had the best concentration for all parameters, followed
by MMD-ABC, which yields the second best estimation. However, in this multivariate example, evalu-
ating the Wasserstein distance (O(n3)) and MMD (O(n2)) is much more expansive than KL-divergence
(O(n log n)). On an Intel Core i5 (1.3 GHz) and over 1000 repetitions, the average run time per call
was 0.433s for the Wasserstein and 0.0330s for the MMD, whereas one evaluation of the KL-divergence
only took 0.00240s. One call of the summary statistics and the Euclidean discrepancy combined was
order-of-magnitude faster (9.36× 10−5s).

5.2 Univariate g-and-k Distribution

The univariate g-and-k distribution is an example of quantile distributions, which is a class of flexible
distributions defined in terms of its inverse CDF or quantile function [Drovandi et al., 2011]. It was
first proposed by Rayner and Macgillivray [2002] and has been widely studied in the context of ABC
[Prangle, 2017; Bernton et al., 2019a]. Its quantile function is defined through five parameters as

F−1(r) = a+ b

(
1 + c

1− exp(−gz(r))
1 + exp(−gz(r))

)
(1 + z(r)2)kz(r),

for r ∈ (0, 1), where z refers to the r-th quantile of N (0, 1) and c = 0.8 by convention (see Rayner and
Macgillivray [2002] for a justification). The other 4 parameters θ = (a, b, g, k)ᵀ controls its location,
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(c) MMD-ABC.
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Figure 7: Contours of the estimated posterior densities for each method in the bivariate Gaussian mixture
model. The black dotted lines mark the true mean values (µ01, µ02) = (0.7, 0.7), (µ11, µ12) = (−0.7,−0.7).
Except the Euclidean ABC, all methods managed to identify the parameters with a high quality.
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Figure 8: Posteriors of the four parameters in the univariate g-and-k model. MH approximation of the
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dotted lines.
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Figure 9: Sequentially selected thresholds for the g-and-k model using a fixed budget of 105 simulations.
Top left: Euclidean ABC; top right: MMD-ABC; bottom left: WABC; bottom right: KL-ABC. All
methods converged within 6, 000 model simulations, with WABC showing the fastest convergence.

scale, skewness and kurtosis, respectively. Simulating from g-and-k distributions is straightforward with
the inversion method: one first simulates a standard normal random variate z(r), then substitutes it into
F−1(r). Unfortunately, its density function has no closed form. Numerical estimation of the likelihood
is possible through finite difference, but this is very costly.

We choose the standard setting with n = 1000, θ∗ = (3, 1, 2, 0.5)ᵀ and a uniform prior on [0, 10]4.
This set-up was also studied in Bai Jiang [2018]; Sisson et al. [2018]; Prangle [2017]. To estimate the
true posterior, we run four Metropolis-Hastings chains [Hastings, 1970], discard the initial 50, 000 ones
as burnin and keep once every 10 samples in the rest to yield 1024 samples. The resulting posterior
densities are shown in Fig. 8.

For the Euclidean ABC, the summary statistics is chosen to be the four statistics recommended by
Sisson et al. [2018]:

s(y1:n) = (E4, E6 − E2, (E6 + E2 − 2E4)/(E6 − E2), (E7 − E5 + E3 − E1)/(E6 − E2))ᵀ,

where E1 ≤ . . . ≤ E8 are the octiles of y1:n. Because of this clever choice of summary statistics, Euclidean
ABC showed superior performance over the others. We remark that choosing good summary statistics
itself can be a non-trivial task in more complicated examples (e.g. multivariate g-and-k distributions).
Nonetheless, WABC beat Euclidean ABC in estimating k and MMD-ABC was the most superior in
estimating b. WABC also exhibited a faster convergence, as shown by the trace plot of the adaptively
selected thresholds (Fig. 9). WABC, however, failed to concentrate on the true parameters for a and g.
The estimation of KL-ABC was rather poor. None of the methods successfully identified a and g within
the budget.

5.3 M/G/1 Queuing Model

The M/G/1 queuing model, introduced by Heggland and Frigessi [2004], has been a popular example of
non-i.i.d. data in the ABC literature. It models a service system with a single server where the service
times are uniformly distributed on interval [θ1, θ2] and the inter-arrival times wi of customers follow
an Exponential distribution with rate θ3. The inter-departure times (yi)i≥1 are modelled through the
process yi = max(0,

∑i
j=1wj−

∑i−1
j=1 yj). Bayesian inference on θ = (θ1, θ2, θ3)ᵀ is done by assuming that

the inter-departure times are the only quantities observed. Since the inter-arrival times are unobserved,
numerical evaluations of the likelihood is expansive [Blum and François, 2010].

We consider the set-up in Blum and François [2010]: we generate n = 50 samples y1:n with θ∗ =
(1, 4, 0.2)ᵀ. For the priors, we assign independent Uniform(0, 10) to θ1 and (θ2−θ1), and Uniform(0, 1/3)
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5.4 Ecological Dynamic Systems
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Figure 10: Posteriors of the three parameters in the M/G/1 queuing model. PMMH approximation of
the true posterior in shown by the grey area. The true parameters θ1 = 1, θ2 − θ1 = 3 and θ3 = 0.2 are
shown by the black dotted lines.
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Figure 11: Sequentially selected thresholds for the queuing model. Top left: Euclidean ABC; top right:
MMD-ABC; bottom left: WABC; bottom right: KL-ABC. KL-ABC exhibited slightly slower convergence
than the others.

to θ3. Note that, upon observing y1:n, θ1 cannot be larger than mini=1,...,n yi. This can be encoded by
placing a Uniform(0, 10∧ y(1)) prior on θ1, where y(1) denotes the minimum of yi and a∧ b := min(a, b).

To estimate the true posteriors, we follow the implementation in Bernton et al. [2019a], which used
a particle marginal Metropolis-Hastings (PMMH) algorithm of Andrieu et al. [2010] with 4096 particles
and 100, 000 iterations. The estimated posteriors together with the ABC posteriors are shown in Fig. 10.
The summary statistic for the Euclidean ABC was chosen to be a 20-dimensional vector consisting of the
5%-quantiles. We remark that, within a budget of 106 simulations, all methods successfully identified
θ2−θ1 and θ3, but struggled to produce decent estimation for θ1. WABC and MMD-ABC outperformed
the other two methods in all cases, with the former showing slightly better approximations for θ1 and θ3.
KL-ABC, despite being able to pick up the true values, exhibited slower and unsatisfactory concentration.

5.4 Ecological Dynamic Systems

As an example of real-life applications of ABC on ecological dynamic systems. We consider a data set
studied by Wood [2010] and Fearnhead and Prangle [2012] that contains T = 180 observations on adult
blowfly populations over time. The population Nt+1 at time t+1 is modelled by a discretized differential
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Figure 12: Posteriors of the six parameters θ = (P,N0, σd, σp, τ, δ)
ᵀ in the blowfly model with the real

data set, where the true parameters are unknown.

equation:

Nt+1 = PNt−τ exp

(
−Nt−τ

N0

)
et +Nt exp (−δεt) ,

where Nt+1 is determined by the time-lagged observations Nt and Nt−τ and independent Gamma noises
et ∼ Gamma(1/σ2

p, σ
2
p) and εt ∼ Gamma(1/σ2

d, σ
2
d). We are interested in performing inference on pa-

rameters θ = (P,N0, σd, σp, τ, δ)
ᵀ upon observing N1:T . As remarked in Wood [2010], this model is

near-chaotic in the sense that a small change in the parameters would drastically vary the realizations
generated. Evaluation of the likelihood function is therefore extremely costly.

Following Park et al. [2016], we place independent Gaussian priors on the logarithms of the parame-
ters:

log(P ) ∼ N (2, 4), log(N0) ∼ N (5, 0.25), log(σd) ∼ N (−0.5, 1),

log(σp) ∼ N (−0.5, 1), log(τ) ∼ N (2, 1), log(δ) ∼ N (−1, 0.16).

Eight summary statistics are chosen for the Euclidean ABC: 25% quantiles of N1:T /1000 (4 statistics)
and of its first order differences (4 statistics). Resulting posteriors with a budget of 5× 106 simulations
are plotted in Fig. 12. The results for KL-divergence are not shown for illustration purpose as they did
not concentrate within the limited budget.

We can see from Fig. 12 that all three methods concentrated on similar values for all parameters.
Euclidean ABC showed better concentration for N0, σd and τ , whereas WABC and MMD-ABC exhibited
better concentration for P and δ. We remark that since the data are not i.i.d., the discussions in
section 4.4 and 4.5 to verify the assumptions for concentration rates no longer apply. Using the posterior
means of these parameters from each method, we can draw one set of realizations from the model to
visualize the quality of estimation, as shown in Fig. 13.

Except the realization produced by MMD-ABC, which showed apparent deviation from the real
data (grey curves), it is hard to tell whether Euclidean ABC is better than WABC solely from their
realizations. Instead, we can repeat the same experiment on a model with known parameters and compare
their concentration to argue which method is superior. The parameters are chosen to be the posterior
means reported in the code given by Park et al. [2016]: P = 29, δ = 0.2, N0 = 260, σd = 0.6, σp = 0.3
and τ = 7. The posterior densities are shown in Fig. 15. We can see that, in fact, Wasserstein had
competitive performance for most parameters apart from σd and τ , for which it is outperformed by the
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Figure 13: Realizations from the blowfly model with parameters equal to the posterior means of Euclidean
ABC, Wasserstein ABC and MMD-ABC. The blowfly population (y-axis) is plotted against time (x-axis).
Grey lines are the real data reported in Wood [2010]. The realization produced with Wasserstein ABC
resembles the real data most.
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Figure 14: Sequentially selected thresholds for the blowfly model. Top left: Euclidean ABC; top right:
MMD-ABC; bottom left: WABC; bottom right: KL-ABC. All methods converge within 4× 105 model
simulations.

Euclidean ABC. In the case of limited computational budget, we argue that either the Euclidean ABC
or Wasserstein ABC could be used for this problem. However, if one affords more computational power,
we suggest to run both methods and use a combination of the results by choosing the posterior means
of Euclidean ABC for σd and τ and of Wasserstein ABC for the rest.

For the computational times, on average of 1000 runs, each call of the Wasserstein distance took 1.90×
10−4s, while each evaluation of the summary statistic and the Euclidean discrepancy took 7.83× 10−4s.
The cost per call of the MMD was remarkably larger (2.91 × 10−3s). We emphasize that computing
Wasserstein distances in one dimension is resolved to a sorting problem (see section 3.1.2), which is likely
to have caused the difference in the run times between Wasserstein and MMD.

6 Discussion

How to choose a suitable summary statistic and a discrepancy metric lies at the heart of ABC problems.
We have reviewed three discrepancy metrics on the space of probability measures — Wassertsein dis-
tances, maximum mean discrepancy and KL-divergence — which are popular in optimal transport and
information theory, and bypass the need to select summary statistics.

As shown through a number of benchmark experiments, ABC with Wasserstein distances and MMD,
despite being more computationally involved, generally outperform KL-ABC. In particular, KL-ABC
exhibits the slowest posterior concentration rate in most experiments. In comparison, WABC is able to
identify the true parameters and achieves decent concentration in most experiments. The performance of
MMD is only slightly worse than WABC, but it has the advantage of having a cost that is only quadratic
in the data size, making it more suitable for large-scale data sets. We hope this essay has provided
guidance for practitioners who are interested in using these metrics in their ABC paradigm.
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Figure 15: Posteriors of the six parameters in the blowfly model with simulated data and known true
parameters: P = 29, δ = 0.2, N0 = 260, σd = 0.6, σp = 0.3 and τ = 7. The true parameters are marked
by black dotted lines.

We have also reviewed the asymptotic results presented in Bernton et al. [2019a]. In particular, the
large-sample asymptotic (Prop. 4.1) shows that, for a fixed threshold ε, the ABC posterior as we obtain
more and more data converges not to the true posterior, but to a restricted version of it. Moreover, we
generalize the small-tolerance asymptotic (Proposition 2 of Bernton et al. [2019a]; Prop. 4.4 of this essay)
to any soft ABC posterior whose associated kernel satisfies the concentration condition (definition 5).
This guarantees the convergence of the ABC posterior to the true posterior as the threshold tends to zero.
Furthermore, one can obtain quantitative bounds on the rate of posterior concentration by assuming mild
conditions on the data discrepancy, the data generating process and the parameter space (assumption 1
– 5). Sufficient conditions for these assumption to hold for Wp and MMD are provided.

Directions of future research may include finding the optimal rates of concentration of WABC and
MMD-ABC posteriors. In particular, it would be beneficial to generalize the convergence properties of
ABC posteriors with an arbitrary member of the family of integral probability metrics Müller [1997], to
which Wasserstein and MMD belong.

Furthermore, ABC with the aforementioned Sinkhorn divergence, which is an interpolation between
the Wasserstein distance and MMD, is still under-explored and deserves further study. This, together
with the sliced-Wasserstein distance mentioned in Nadjahi et al. [2019], are also linked to the scalability
of ABC, which remains an ongoing research topic in the present literature.

Finally, the fact that the KL divergence is not a proper metric defies any theoretical guarantees on
the posterior concentration of KL-ABC. More justification on this aspect is needed. This may also shed
light on more informed use of another broad family of metrics within ABC, termed the f-divergence
[Csiszár and Shields, 2004], especially because it has been proven successful in many other applications,
such as variational inference and generative adversarial networks [Nowozin et al., 2016].
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A Positive Definite Kernels

We provide the definition of positive definite kernels discussed in section 3.2.

Definition 6 (Positive definite kernels). A symmetric function k : Y × Y → R is a positive definite
kernel if, for any y1, . . . , yn ∈ Y and any α1, . . . , αn ∈ R,

n∑
i=1

n∑
j=1

αiαjk(yi, yj) ≥ 0.

This is not to be confused with the kernels introduced in section 2.2, which are functions on R. Three
examples of positive definite kernels are:

1. Polynomial: k(y, z) = (yᵀz + c)p, where c > 0 and p ∈ N.

2. Gaussian: k(y, z) = exp(−‖y − z‖2/(2σ2)), where σ > 0.

3. Laplacian: k(y, z) = exp(−‖y − z‖1/(2σ)), where σ > 0.

Due to the characteristic property (see e.g. Definition 3.2 of Muandet et al. [2017]) of the Gaussian
and Laplacian kernels, they are commonly used in kernel mean embedding. Also note that these two
kernels are bounded, so it follows from Prop. 3.1 that the embedding of any distribution is well-defined.
The parameter σ is known as the bandwidth, similarly to the case of kernel density estimation.

Park et al. [2016] suggest to use the Gaussian kernel with the median of {‖yi− yj‖1 : i, j = 1, . . . , n}
as the bandwidth.

B An Alternative Definition of Maximum Mean Embedding

Definition 7 (Sriperumbudur et al. [2010]). Let F be a collection of real-valued bounded measurable
functions on Y and let µ, ν be two probability measures. The integral probability metric is defined as

γ[F ;µ, ν] = sup
f∈F

{∫
f(x)dµ(x)−

∫
f(x)dν(x)

}
.

It can be shown that [Dudley, 2002, Theorem 11.8.2; Gretton et al., 2012, Lemma 4 Muandet et al.,
2017, p. 50]:

1. If F is the set of all 1-Lipschitz functions with respect to a metric ρ on Y, i.e. F = {f : |f(x) −
f(y)| ≤ ρ(x, y)}, then γ[F ;µ, ν] =W1(µ, ν).

2. If F is the set of functions in the unit ball of some RKHS H, i.e. F = {f : ‖f‖H ≤ 1}, then
γ[F ;µ, ν] = MMD2(µ, ν).

Formally, 1 follows from the Kantorovich-Rubinstein duality. We can therefore see that WABC and
K2-ABC are closely related in the sense that they are both using special cases of integral probability
metrics on P(Y) as data discrepancy.
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C Almost Sure Convergence of the 1NN Estimator for KL Divergence

We present the proof that the estimator Eq. 8 for the KL divergence is consistent. A more general result
for an estimator using k-nearest-neighbours can be derived with the same idea (see, e.g. Perez-Cruz,
2008, Theorem 2). The proof relies on the following lemma.

Lemma C.1. Assume µ and ν are absolute continuous probability measures and µ is absolutely contin-
uous with respect to ν. Denoter(yi) := min

j=1,...,n
‖yi − zj‖2,

s(yi) := minj 6=i;j=1,...,n ‖yi − yj‖2,

p̂(yi) := 1
n−1 ·

Γ( d
2

+1)

πd/2r(yi)
,

q̂(yi) := 1
n ·

Γ( d
2

+1)

πd/2s(yi)
,

where yi and zj are i.i.d. samples from µ and ν, respectively. It follows that µ(dy)/p̂(y) is an exponential
random variable with unit rate for any y in the support of µ(dy).

The assumption that µ is absolutely continuous with respect to ν guarantees that the KL divergence
is finite. p̂ and q̂ can be thought intuitively as estimators for the densities µ(dy) and ν(dy). The almost
sure convergence of the estimator 8 for KL-divergence then follows from the following result.

Theorem C.2. Under the same assumptions in Lemma C.1, DKL(y1:n, z1:n)
a.s.→ KL(µ‖ν) as n→∞.

Proof of Lemma C.1. Note first that, by definition of r(yi), P(r(y) > ε)→ 0 as n→∞ for any positive ε
and any y in the support of µ(dy). Therefore, as n approaches infinity, we can consider y and its nearest
neighbour to be drawn from a uniform distribution µ. A consequence is that we can assume without
loss of generality that µ is a d−dimensional uniform distribution on its support.

Suppose µ is uniform as described. Let the set Sy,R := {yi : ‖yi − y‖2 ≤ R} be the set of all samples
contained within the ball of radius R centred at y, denoted By,R. If By,R lies in the support of µ(dy),
then {‖yi− y‖d2 : yi ∈ Sy,R} are uniformly distributed between 0 and Rd. Recall the standard result that
the waiting time from the origin to the first arrival of N uniform random variable, where N is a Poisson
random variable, is exponentially distributed (see e.g. [Balakrishnan, 1996, Chapter 33.2.3]). Therefore,
r(y)d = minyi∈Sy,R ‖yi − y‖d2 is an exponential random variable. Now,

µ(dy)

p̂(y)
=
µ(dy)(n− 1)πd/2r(yi)

d

Γ(d/2 + 1)
.

Since πd/2/Γ(d/2 + 1) is the volume of a d-dimensional unit ball, µ(dy)(n − 1)πd/2/Γ(d/2 + 1) is the
mean number of samples contained in a unit ball centred at y. It follows by scaling that µ(dy)/p̂(y) is
exponentially distributed with rate 1.

Proof of Theorem C.2. We begin by rewritting Eq. 8 as

DKL(y1:n, z1:n) =
1

n

n∑
i=1

p̂(yi)

q̂(yi)
=

1

n

n∑
i=1

log
µ(dyi)

ν(dyi)
− 1

n

n∑
i=1

log
µ(dyi)

p̂(yi)
+

1

n

n∑
i=1

log
ν(dyi)

q̂(yi)
.

The first term converges almost surely to the KL divergence between µ and ν. For the second term, recall
from Lemma C.1 that µ(dyi)/p̂(yi) is Exponentially distributed with unit rate. The second term hence
converges almost surely to EX [log(X)], where X ∼ Exponential(1). By the same argument, ν(dyi)/q̂(yi)
also follows Exponential(1). The third term again converges almost surely to EX [log(X)] and cancels
with the second.

Finally, since a finite sum of almost surely convergent terms converges almost surely, the result
follows.
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D Proofs of the Posterior Concentration Rates

We present the proofs of Prop. 4.6 and of Cor. 4.7, which are provided in the appendix of Bernton et al.
[2019a].

Proof of Prop. 4.6. We begin by considering the probability πyε+εn1:n
(Wp(µθ, µ∗) > δ) for some δ, ε > 0.

By Bayes’ formula,

πε+εny1:n
(Wp(µθ, µ∗) > δ) =

Pθ,z1:n(Wp(µθ, µ∗) > δ,Wp(µ̂y1:n , µ̂θ,z1:n) ≤ ε+ ε∗)

Pθ,z1:n(Wp(µ̂y1:n , µ̂θ,z1:n) ≤ ε+ ε∗)
, (12)

where Pθ,z1:n denotes the joint distribution of parameter θ and synthetic data z1:n ∼ µ
(n)
θ . We will

proceed to upper-bound Eq. 12 by upper-bounding the numerator and lower-bounding the denominator.
Denote the event on the numerator by Ω = {Wp(µθ, µ∗) > δ,Wp(µ̂y1:n , µ̂θ,z1:n) ≤ ε + ε∗}. On Ω, we

have

δ <Wp(µθ, µ∗) ≤ Wp(µ∗, µ̂y1:n) +Wp(µ̂y1:n , µ̂θ,z1:n) +Wp(µ̂θ,z1:n , µθ) (13)

≤ Wp(µ∗, µ̂y1:n) +Wp(µ̂θ,z1:n , µθ) + ε+ ε∗,

where Eq. 13 follows from triangular inequality of Wp. Let A(n, ε) := {y1:n ∈ Yn :Wp(µ̂y1:n , µ∗) ≤ ε/3}
and assume henceforth that y1:n ∈ A(n, ε). We have

δ <Wp(µθ, ∗) ≤ Wp(µ̂θ,z1:n , µθ) + 4ε/3 + ε∗.

Reparametrizing ξ := δ − 4ε/3− ε∗, we can use the above inequality to bound the numerator by

πε+ε∗y1:n
(Wp(µθ, µ∗) > 4ε/3 + ε∗ + ξ) ≤

Pθ,z1:n(Wp(µ̂θ,z1:n , µθ) > ξ)

Pθ,z1:n(Wp(µ̂y1:n , µ̂θ,z1:n) ≤ ε+ ε∗)
. (14)

The rest of the proof proceeds by further bounding the above fraction using the three assumptions.
Focusing first on the numerator, we have by assumption 2 that

Pθ,z1:n(Wp(µ̂θ,z1:n , µθ) > ξ) =

∫
Θ
µ

(n)
θ (Wp(µ̂θ,z1:n , µθ) > ξ)π(dθ)

≤
∫

Θ
c(θ)fn(ξ)π(dθ) = c1fn(ξ),

where c1 :=
∫

Θ c(θ)π(dθ) ≤ ∞. For the numerator,

Pθ,z1:n(Wp(µ̂y1:n , µ̂θ,z1:n) ≤ ε+ ε∗) =

∫
Θ
µ

(n)
θ (Wp(µ̂y1:n , µ̂θ,z1:n) ≤ ε+ ε∗)π(dθ)

≥
∫
Wp(µθ,µ∗)≤ε/3+ε∗

µ
(n)
θ (Wp(µ̂y1:n , µ̂θ,z1:n) ≤ ε+ ε∗)π(dθ)

≥
∫
Wp(µθ,µ∗)≤ε/3+ε∗

µ
(n)
θ (Wp(µ̂y1:n , µ∗) +Wp(µ∗, µθ) +Wp(µθ, µ̂θ,z1:n))π(dθ) (15)

≥
∫
Wp(µθ,µ∗)≤ε/3+ε∗

µ
(n)
θ (Wp(µθ, µ̂θ,z1:n) ≤ ε/3)π(dθ)

(as Wp(µ∗, µθ) ≤ ε/3 + ε∗ and Wp(µ̂y1:n , µ∗) ≤ ε/3)

= π(Wp(µθ, µ∗) ≤ ε/3 + ε∗)−
∫
Wp(µθ,µ∗)≤ε/3+ε∗

µ
(n)
θ (Wp(µθ, µ̂θ,z1:n) > ε/3)π(dθ)

≥ π(Wp(µθ, µ∗) ≤ ε/3 + ε∗)−
∫
Wp(µθ,µ∗)≤ε/3+ε∗

c(θ)fn(ε/3)π(dθ) (by assumption 2,)
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D PROOFS OF THE POSTERIOR CONCENTRATION RATES

where Eq. 15 follows from the triangular inequality. By the condition in assumption 2, choosing ε > 0
small enough such that ε/3 ≤ δ0 yields c(θ) ≤ c0 for some c0 > 0. The above line is then bounded below
by π(Wp(µ∗, µθ) ≤ ε/3 + ε∗)(1− c0fn(ε/3)).

Now, replacing ε by εn such that fn(εn) → 0 implies that c0fn(ε/3) ≤ 1/2 for n sufficiently large.
Therefore, we have the following lower bound fort he denominator

1

2
π(Wp(µ∗, µθ) ≤ εn/3 + ε∗) ≤ cπεLn ,

for n large enough, by assumption 3. Combining this with the bound on the numerator, we have

πεn+ε∗
y1:n

(Wp(µ∗, µθ) > 4εn/3 + ε∗ + ξ) ≤ Cfn(ξ)ε−Ln ,

where C := c1/cπ. Now, since fn is strictly decreasing, the inverse f−1
n is well-defined at εLn/R, and we

can choose ξn = f−1
n (εLn/R) to yield

πεn+ε∗
y1:n

(Wp(µ∗, µθ) > 4ε/3 + ε∗ + f−1
n (εLn/R)) ≤ C/R.

Finally, P({ω : y1:n(ω) ∈ A(n, εn)}) → 1 as n → ∞ by assumption. Hence, the above inequality holds
with probability going to 1.

Proof of Cor. 4.7. Let δ > 0 such that {θ ∈ Θ : ρΘ(θ, θ∗) ≤ δ} ⊂ U , where U is the set described in
assumption 5. By assumption 4, there exists δ′ > 0 such that ρΘ(θ, θ∗) > δ implies Wp(µθ, µ∗)− ε∗ > δ′.

Choose n large enough such that 4εn/3 + f−1
n (εLn/R) < δ′. For all θ ∈ Θ such that Wp(µθ, µ∗) ≤

4εn/3 + f−1
n (εLn/R) + ε∗, we have Wp(µθ, µ∗) − ε∗ ≤ δ′, which implies ρΘ(θ, θ∗) ≤ δ. It follows that

{θ ∈ Θ :Wp(µθ, µ∗)− ε∗ ≤ 4εn/3 + f−1
n (εLn/R)} ⊂ U .

Therefore, the inequality in assumption 5 implies

πεn+ε∗
y1:n

(ρΘ(θ, θ∗) ≤ K(4εn/4 + f−1
n (εLn/R))α) ≥ πεn+ε∗

y1:n
(Wp(µθ, µ∗)− ε∗ ≤ 4εn/3 + f−1

n (εLn/R))

≥ 1− C/R,

with probability going to 1, where the second line follows from Prop. 4.6.

D.1 Generalization to Other Metrics

We remark that, in the above two proofs, the only assumptions on the discrepancy metric Wp, apart
from assumptions 1-5, are that

(i) it satisfies the triangular inequality (Eq. 13 and Eq. 15), and

(ii) it is symmetric.

In other words, any metric D satisfying these two conditions and assumptions 1-5 yields the same
bounds on the concentration rate as in Prop. 4.6 and Cor. 4.7, by replacing Wp with D and following
the same argument in the two proofs. In particular, since the MMD is a proper metric, we have shown
that MMD-ABC has the same bound on the concentration rate. In contrast, the proofs would not work
for KL-ABC, as it is well known that the KL divergence does not satisfies the triangular inequality and
is not symmetric [MacKay, 2003].
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D.2 Weak Convergence and the Metrizable Property

D.2 Weak Convergence and the Metrizable Property

To verify assumption 4 with i.i.d. data, Bernton et al. [2019a] gave in their supplementary material
sufficient conditions in the case of Wasserstein distances. Here, we generalize them to an arbitrary
metric D that metrizes the weak convergence in P(Y). We begin by defining the weak convergence and
the metrizable property [Villani, 2009, Definition 6.7].

Definition 8 (Weak convergence in P(Y)). A sequence of probability measures (µn)n≥1 in P(Y) is said
to converge weakly to some µ in P(Y) if Eµn [f ]→ Eµ[f ], for all bounded, continuous function f .

Definition 9 (Weak convergence in Pp(Y)). Let p ∈ [1,∞) and Pp(Y) be the Wasserstein space of order
p (see section 3.1.1). A sequence of probability measures (µn)n≥1 in Pp(Y) is said to converge weakly to
some µ in Pp(Y) if µn → µ in distribution, and there exists y0 ∈ Y such that∫

Y
ρ(y0, y)pdµn(y)→

∫
Y
ρ(y0, y)pdµ(y).

Definition 10. A metric D is said to metrize the weak convergence in a space of probability measures
P(Y) if a sequence of probability measures in P(Y) converges in D if and only if it converges weakly.

It is known that Wp for p ∈ [1,∞) metrizes Pp(Y) [Villani, 2009, Theorem 6.8] and the MMD
associated with a continuous and characteristic kernel metrizes P(Y) [Simon-Gabriel and Schölkopf,
2018, Theorem 12]. Assuming D metrizes the weak convergence in some space of probability measures
P(Y) and the data are i.i.d., the following conditions imply assumption 4.

Assumption 6. For any θn, θ ∈ Θ, n ∈ N, ρΘ(θn, θ)→ 0 implies D(µθn , µθ)→ 0.

Proposition D.1. Let D be a metric that metrizes the weak convergence in P(Y) and assume 6 holds.
Suppose that there exists a connected and compact S ⊂ Θ with positive Lebesgue measure such that

inf
θ∈Θ\S

D(µ∗, µθ) > inf
θ∈Θ

D(µ∗, µθ). (16)

Then θ 7→ D(µ∗, µθ) attains its minimum at some θ∗. Furthermore, if θ∗ is unique, then it is well-
separated.

Proof of Prop. D.1. Assumption 6 and the metrizable property of D gives that θ 7→ D(µ∗, µθ) is contin-
uous. It therefore attains a minimum θ∗ in compact S. This is also a global minimum by the condition
Eq. 16.

Now, assume θ∗ is unique. We shall show that it is well-separated, i.e. ∀ε > 0, ∃δ > 0 such that

inf
θ∈Θ:D(µθ,µ∗)≥ε

> D(µ∗, µθ∗) + δ.

Fix ε > 0. If {θ ∈ Θ : D(µθ, µ∗) ≥ ε} ⊂ Θ\S, then by Eq. 16,

inf
{θ∈Θ:D(µθ,µθ∗ )≥ε}

D(µ∗, µθ) ≥ inf
θ∈Θ\S

D(µ∗, µθ) > inf
θ∈Θ

D(µ∗, µθ),

so well-separation follows. If {θ ∈ Θ : D(µθ, µ∗) ≥ ε} ∩ S 6= ∅, then it is compact. Indeed, since S is
compact, there exists ε′ > ε such that S ⊂ {θ ∈ Θ : ε′ ≥ D(µθ, µθ∗)}. Hence, {θ ∈ Θ : D(µθ, µθ∗) ≥
ε} ∩ S = {θ ∈ Θ : ε′ ≥ D(µθ, µθ∗) ≥ ε} ∩ S. Since {θ ∈ Θ : ε′ ≥ D(µθ, µθ∗) ≥ ε} is compact, this
intersection of 2 compact sets is also compact. It follows by continuity of θ 7→ D(µθ, µθ) that it attains
an infimum on {θ ∈ Θ : D(µθ, µθ∗) ≥ ε} ∩ S. Note that θ∗ is not contained in this set, so this infimum
cannot be θ∗ by uniqueness. Hence, well-separation follows.

Assumption 6 can be checked in special cases where explicit relationship between ρΘ and Wp can be
derived. An example is well-specified location models with ρΘ being the Euclidean distance, in which
case Bernton et al. [2019a] showed in their supplementary material that Wp(µθ, µθ∗) = ρΘ(θ, θ∗).
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