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Ingredients of Stein’s Method



Motivation — Quantifying Discrepancy

Let X ⊂ Rd and P a probability measure on X .

Problem of interest: Given another probability measure Q on X ,
how to quantify the discrepancy from Q to P ?

P: target distribution
Q: MCMC samples P: generative models

Q: true images
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Motivation — Quantifying Discrepancy

Integral Probability Metrics (IPM)

Given a family H ⊂ L1(P) ∩ L1(Q) of read-valued functions, the IPM1

is the distance metric

dH(Q,P) = sup
h∈H

|EX∼Q[h(X)]− EX∼P[h(X)]|.

• Total Variation distance: H = {h : X → R : supx∈X |h(x)| ≤ 1}
• L1-Wasserstein distance, dW:

HW = {h : X → R : |h(x)− h(y)| ≤ ∥x − y∥2, ∀x, y}
• Bounded Wasserstein distance/Dudley metric, dbW:

Hbw = {h ∈ HW : h is bounded}

1Müller [1997]
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Motivation — Quantifying Discrepancy

Integral Probability Metrics (IPM)

Given a family H ⊂ L1(P) ∩ L1(Q) of read-valued functions, the IPM
is the distance metric

dH(Q,P) = sup
h∈H

|EX∼Q[h(X)]− EX∼P[h(X)]|.

Problem: dH(Q,P) requires integrating over P, so it cannot be
computed!

Solution: Find H so that ∀h ∈ H, EX∼P[h(X)] = 0. Then

dH(Q,P) = sup
h∈H

|EX∼Q[h(X)]−((((((EX∼P[h(X)] |.

How to choose H for a generic P ? — Use Stein’s method !

5



Motivation — Quantifying Discrepancy

Integral Probability Metrics (IPM)

Given a family H ⊂ L1(P) ∩ L1(Q) of read-valued functions, the IPM
is the distance metric

dH(Q,P) = sup
h∈H

|EX∼Q[h(X)]− EX∼P[h(X)]|.

Problem: dH(Q,P) requires integrating over P, so it cannot be
computed!

Solution: Find H so that ∀h ∈ H, EX∼P[h(X)] = 0. Then

dH(Q,P) = sup
h∈H

|EX∼Q[h(X)]−((((((EX∼P[h(X)] |.

How to choose H for a generic P ? — Use Stein’s method !

5



Stein’s Method

Given a probability measure P on X , we are interested in finding a
linear operator T acting on some set G(T ) of functions on X such
that

For all probability measure Q on X ,

Q = P ⇐⇒ EX∼Q[(T g)(X)] = 0, for all g ∈ G(T ). (1)

Glossary:

• Stein operator: T
• Stein class: G(T ) for which EX∼Q[(T g)(X)] = 0 for all g ∈ G(T )

• Stein set: Any G ⊂ G(T )

• Stein characterisation: The equivalence (1)
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Why Stein’s Method?

Stein’s method is useful in many areas:

• Theoretical stats:
• Deriving explicit (non-asymptotic) bounds on the distance

between distributions. [Reinert, 1998, Mijoule et al., 2021]

• Computational stats/machine learning:
• Quantifying the discrepancy between distributions (Stein

Discrepancy) [Gorham and Mackey, 2015, Liu et al., 2016, Chwialkowski et al.,

2016].
• Sampling from unnormalised densities (Stein Variational Gradient

Descent). [Liu and Wang, 2016, Gong et al., 2021, Liu et al., 2022]

• Training generative models [Grathwohl et al., 2020].
• Variance reduction [Mira et al., 2013, Oates et al., 2017]
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Constructing the Stein Operator T

TL; DR: So long as P is sufficiently regular, a Stein operator T (and
Stein class G(T )) can be constructed in a schematic approach.

Approaches:

• Generator approach
• Density approach
• Couplings, orthogonal polynomials, ODEs...
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Generator Approach

If a Markov process (Zt)t≥0 with invariant measure P is sufficiently
regular (i.e. a Feller process) (e.g. when P has a density function
p : X → R+ w.r.t. some dominating measure), then it has an
infinitesimal generator T that satisfies

EZ∼P[(T u)(Z)] = 0 for all u : Rd → R in the domain of T .
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Generator Approach — Examples

E.g.1 Standard multivariate Normal

P = N (0, Id) is an invariant measure of the process
Zt,x = e−tx +

√
1 − e−2tZ, where Z ∼ N (0, Id). The Stein operator is

(T g)(x) = ∇⊺∇g(x)− x⊺g(x),

for twice differentiable u : Rd → R.

E.g.2 Langevin Stein Operator (Popular in ML!)

Let P have density p supported on X . Assume
EX∼P[∥∇ log p(x)∥2] < ∞. P is an invariant measure of the Langevin
diffusion dZt,x = 1

2p(x) ⟨∇, p(x)⟩dt + dWt, where (Wt)t≥0 is a Brownian
motion. This leads to the Langevin Stein operator

(T g)(x) = ⟨∇ log p(x), g(x)⟩+ ⟨∇, g(x)⟩.
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Applications in Theoretical
Statistics



Stein Equation

Let T be a Stein operator and G(T ) a Stein class. For any g ∈ G(T ),
we can find h so that

(T g)(·) = h(·)− EX∼P[h(X)]. (2)

“Reversed” question: Given h ∈ H ⊂ L1(P), when does a solution
g = gh to (2) exist?

• Why bother? Studying the properties of gh can help us to bound
differences of the form

EWn [h(Wn)]− EX∼P[h(X)]= EWn [(T g)(Wn)],

where Wn is a sum of independent terms.

Answer:

• Existence of gh guaranteed with many T and G(T ).
• Regularity on gh can be shown assuming regularity on h.
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Example 1: Central Limit Theorem

E.g.1 Central Limit Theorem

Let univariate X1, . . . ,Xn be independent, zero-mean with unit
variance, and E[|X3

i |] < ∞. Put Wn = n−1/2 ∑n
i=1 Xi, and let Qn

denote the measure of Wn. Then

dW(Qn,N (0, 1)) ≤ 1√
n
(
2 + 1

n
∑

i E[|X3
i |]

)
.

Idea of proof : Fix h 1-Lipschitz with derivative h′.

E[h(Wn)]− E[h(Z)]
= E[h(Wn)− E[h(Z)]]

= E[g′′h(Wn)− Wng′h(Wn)] for some gh with ∥g(3)h ∥∞ ≤ 2∥h∥∞.
≤ · · ·

≤ ∥h′∥∞√
n

(
2 + 1

n
∑

i E[|X3
i |]

)
.
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Example 2: Explicit bound on normality of MLE

Let X1, . . . ,Xn be i.i.d. from a single-parameter distribution Pθ0 with
parameter space Θ. Under regularity conditions, as n → ∞,

• Asymptotic normality of MLE:

Wn :=
√

ni(θ0)(θ̂n(X)− θ0) →d N (0, 1).

• Anastasiou and Reinert [2017]: For ϵ with (θ0 − ϵ, θ0 + ϵ) ⊂ Θ,

dbW(Wn,N (0, 1))

≤ 1
n

(
2 + 1

[i(θ0)]3/2 E
[
| d

dθ log f(X1|θ0)|3
])

+ 1√
i(θ0)

√
Var

(
d2

dθ2 log f(X1|θ0)
)√

E[(θ̂n(X)− θ0)2]

+ 2
ϵ2 E[(θ̂n(X)− θ0)

2]

+ 1
2
√

ni(θ0)

[
E
[(∑

i M(Xi)
)2

∣∣∣|θ̂n(X)− θ0| < ϵ
]]1/2 [

E[(θ̂n(X)− θ0)
4]
]1/2

.

Each term on the RHS can be computed explicitly for simple Pθ!
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Example 2: Explicit bound on normality of MLE

E.g. Exponential distribution

Let Pθ0 = Exponential(θ0). Then, for ϵ = θ0/2 > 0,

dbW(Wn,Pθ0) ≤ 4.41456√
n + 8(n+2)(1+

√
n)

(n−1)(n−2) .
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Applications in Machine
Learning



A Discrepancy based on Stein’s Method

Recall: The IPM is dH(Q,P) = suph∈H |EX∼Q[h(X)]− EX∼P[h(X)]|.

Stein Discrepancy

Given a valid Stein operator T and a Stein set G ⊂ G(T ), choosing
H = {T g : g ∈ G} in IPM defines a discrepancy, called the Stein
discrepancy 2: S(Q,P,G) = supg∈G ∥EX∼G[(T g)(X)]∥2.

How to choose T ? Langevin Stein operator

(T g)(x) = ⟨∇ log p(x), g(x)⟩+ ⟨∇, g(x)⟩.

How to choose G ? Ideally, want

• Discriminability: S(Q,P,G) = 0 ⇐⇒ Q = P
• Computability: S(Q,P,G) can be efficiently computed.

2[Gorham and Mackey, 2015]
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Kernelized Stein Discrepancy

Let Hk be a scalar-valued RKHS with reproducing kernel
k : X × X → R, and let T be the Langevin Stein operator 3.

Langevin Kernlized Stein Discrepancy (KSD)

Choosing Gk := {g = (g1, . . . , gd) : ∥v2∥2 ≤ 1 for vj := ∥gj∥k} leads to
the Langevin KSD 4:

KSDk(Q,P) := S(Q,P,Gk) =
√
EX,X′∼Q[kP(X,X′)],

where the Stein reproducing kernel is

kP(X,X′) := ⟨∇x,∇x′k(x, x′)⟩+ ⟨∇xk(x, x′),∇x′ log p(x′)⟩
+ ⟨∇x′k(x, x′),∇x log p(x)⟩+ k(x, x′)⟨∇x log p(x),∇x′ log p(x)⟩.

3Other choices of T [Gorham et al., 2019] and G [Gorham and Mackey, 2015] are possible.
4Liu et al. [2016], Chwialkowski et al. [2016]
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Application 1: Goodness-of-Fit Test

Setup: Let P have continuously differentiable density p = p∗/Z
supported on X ⊂ Rd, where Z is a normalising constant (unknown),
and p∗ can be evaluated pointwise.

Goodness-of-fit test
Given {xi}n

i=1 drawn from another distribution Q supported on X , is
Q = P ?

Want to test H0 : Q = P against H1 : Q ̸= P.

Equivalently, H0 : KSDk(Q,P) = 0 against H1 : KSDk(Q,P) ̸= 0 .

KSD test5: Compute K̂SDk(Q,P) a test statistic, and reject for large
value of K̂SDk(Q,P).

To compute the rejection threshold (or the p-value), we need to know
the distribution of K̂SDk(Q,P) under H0.
5Liu et al. [2016], Chwialkowski et al. [2016]
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Goodness-of-Fit Test

Theorem (Asymptotic distributions; informal)

Assume EX,X′∼Q[kP(X,X′)2] < ∞. As n → ∞,
• If Q ̸= P, then

√
n(K̂SDk(Q,P)2 − KSDk(Q,P)2) →d N (0, σ2

k),

where σ2
k := Var(EX′∼Q[kP(X,X′)]), and σk > 0.

• If Q = P, then

nK̂SDk(Q,P)2 →d
∑∞

j=1 cj(Z2
j − 1) =: WH0 ,

where Zj ∼ N (0, 1) i.i.d., and {cj}j are the eigenvalues of kP
under Q.

The distribution of WH0 is intractable, but can be approximated
using a wild bootstrap procedure.
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Goodness-of-Fit Tests

KSD Test
Given {xi}n

i=1 ∼ Q and a test level α > 0,
1. For b = 1, . . . ,B, compute bootstrap samples

K̂SD
2
k,b := 1

n2

∑
1≤i̸=j≤n(Wb

i − 1)(Wb
j − 1)kP(xi, xj),

where Wb = (Wb
1, . . . ,Wb

n) ∼ Multinom(n, (1/n, . . . , 1/n)).

2. Reject if K̂SD
2
k ≥ γ̂α, where γ̂α is the (1 − α)-quantile of

{K̂SD
2
k,b}B

b=1.
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Example — Gaussian-Bernoulli Restricted Boltzmann Ma-
chine (RBM)

Target P: p(x) =
∑

h∈{±1}dh p(x, h), where

p(x, h) ∝ exp
( 1

2 x⊺Bh + b⊺x + c⊺h − 1
2∥x∥2

2
)
.

Candidate Q: same as p but with noise injected into the entries of B.
20



Application 2: Sample Quality Measure

Setup: P same as before, and {Qn}n≥1 is a sequence of empirical
measure Qn = n−1 ∑n

i=1 δxi based on sample {xi}n
i=1.

Questions:

1. Does Qn →d P imply KSDk(Qn,P) → KSDk(P,P) = 0?
2. Does KSDk(Qn,P) → 0 imply Qn →d P ?

Theorem [Gorham and Mackey, 2017]

1. If ∇ log p is Lipschitz and k is twice continuously differentiable,
then dW(Qn,P) → 0 =⇒ KSDk(Qn,P) → 0.

2. Assume ∇ log p is distantly dissipative, and k(x, y) = Φ(x − y) for
some twice continuously differentiable Φ with non-vanishing
Fourier transform. If (Qn)n≥1 satisfies a tail condition (uniform
tightness), then KSDk(Qn,P) → 0 =⇒ Qn →d P.
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Example — Hyperparamter Selection

Use KSD as a sample quality measure to select hyperparameters of a
MCMC sampler (Stochastic Graident Fisher Scoring), with comparisons
against a classical metric, ESS (Effective Sample Size).
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Other Applications

SVGD 6: Learning a target distribution by iteratively transporting particles
drawn from an initial distribution.

And many more! See Anastasiou et al. [2021].

6Liu and Wang [2016]
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